【题目】如图,已知数轴上有三点A、B、C,若用AB表示A、B两点的距离,AC表示A、C两点的距离,且AB=
AC,点A、点C对应的数是分别是a、c,且|a+40|+|c﹣20|=0.
![]()
(1)求BC的长.
(2)若点P、Q分别从A、C两点同时出发向左运动,速度分别为2个单位长度每秒、5个单位长度每秒,则运动了多少秒时,Q到B的距离与P到B的距离相等?
(3)若点P、Q仍然以(2)中的速度分别从A、C两点同时出发向左运动,2秒后,动点R从A点出发向右运动,点R的速度为1个单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,点R运动了多少秒时恰好满足MN+AQ=31;并求出此时R点所对应的数.
参考答案:
【答案】(1)BC=40;(2)运动了
秒或20秒时,Q到B的距离与P到B的距离相等;(3)点R运动了
秒或
秒时恰好满足MN+AQ=31,此时点R所对应的数为﹣
或﹣
.
【解析】
(1)由绝对值的非负性可求出a,c的值,进而可得出线段AC的长,结合AB=
AC可求出AB的长,由BC=AC-AB可求出线段BC的长;
(2)由AB的长结合点A对应的数可求出点B对应的数,当运动时间为t秒时,点P对应的数为-2t-40,点Q对应的数为-5t+20,由Q到B的距离与P到B的距离相等,可得出关于t的一元一次方程,解之即可得出结论;
(3)当运动时间为t(t>2)秒时,点P对应的数为-2t-40,点Q对应的数为-5t+20,点R对应的数为t-2-40,结合点M为线段PR的中点及点N为线段RQ的中点可得出点M,N对应的数,进而可得出线段MN的长,结合MN+AQ=31可得出关于t的一元一次方程,解之即可得出结论.
(1)∵|a+40|+|c﹣20|=0,
∴a+40=0,c﹣20=0,
∴a=﹣40,c=20,
∴AC=|﹣40﹣20|=60.
∵AB=
AC=20,
∴BC=AC﹣AB=40.
(2)∵AB=20,点A对应的数为﹣40,且点B在点A的右边,
∴点B对应的数为﹣20.
当运动时间为t秒时,点P对应的数为﹣2t﹣40,点Q对应的数为﹣5t+20,
∵Q到B的距离与P到B的距离相等,
∴|﹣2t﹣40﹣(﹣20)|=|﹣5t+20﹣(﹣20)|,即2t+20=40﹣5t或2t+20=5t﹣40,
解得:t=
或t=20.
答:运动了
秒或20秒时,Q到B的距离与P到B的距离相等.
(3)当运动时间为t(t>2)秒时,点P对应的数为﹣2t﹣40,点Q对应的数为﹣5t+20,点R对应的数为t﹣2﹣40,
∵点M为线段PR的中点,点N为线段RQ的中点,AQ=|﹣40﹣(﹣5t+20)|=|5t﹣60|,
∴点M对应的数为
=﹣
﹣41,点N对应的数为
=﹣2t﹣11,
∴MN=|﹣
﹣41﹣(﹣2t﹣11)|=|
t﹣30|.
∵MN+AQ=31,
∴|
t﹣30|+|5t﹣60|=31.
当2<t<12时,30﹣
t+60﹣5t=31,
解得:t=
;
当12≤t≤20时,30﹣
t+5t﹣60=31,
解得:t=
;
当t>20时,
t﹣30+5t﹣60=31,
解得:t=
(不合题意,舍去).
∴t﹣2=﹣
或﹣
.
当t=
时,点R对应的数为﹣
;当t=
时,点R对应的数为﹣
.
∴点R运动了
秒或
秒时恰好满足MN+AQ=31,此时点R所对应的数为﹣
或﹣
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解:若在一个两位正整数N的个位数字与十位数字之间添上数字6,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数为364”;若将一个两位正整数M加6后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数为40”.
(1)30的“至善数”是 ,“明德数”是 .
(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被9整除;
(3)若一个两位正整数B的明德数的各位数字之和是B的至善数各位数字之和的一半,求B的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次统计共抽查了 名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为 ;
(2)将条形统计图补充完整;
(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?
(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中.设小明出发第t分钟的速度为v米/分,离家的距离为s米.v与t之间的部分图象、s与t之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是( )分钟.

A. 4.5B. 8.25C. 4.5 或8.25D. 4.5 或 8.5
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AOB=∠DOC=90°,OE平分∠AOD,反向延长射线OE至F.

(1)∠AOD和∠BOC是否互补?说明理由;
(2)射线OF是∠BOC的平分线吗?说明理由;
(3)反向延长射线OA至点G,射线OG将∠COF分成了4:3的两个角,求∠AOD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点
都在数轴上,
为原点.
(1)线段
中点表示的数是 ;(2)若点
以每秒
个单位长度的速度沿数轴向右运动了
秒,当点
在点
左边时,
,当点
至点
右边时,
;(3)若点
分别以每秒
个单位长度、
个单位长度的速度沿数轴向右运动,而点
不动,
秒后,
三个点中有一个点是另外两个点为端点的线段的中点,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,C城市在A城市正东方向,现计划在A,C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在城市A的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100 km为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:
)
相关试题