【题目】阅读理解:若在一个两位正整数N的个位数字与十位数字之间添上数字6,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数为364”;若将一个两位正整数M加6后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数为40”.
(1)30的“至善数”是 ,“明德数”是 .
(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被9整除;
(3)若一个两位正整数B的明德数的各位数字之和是B的至善数各位数字之和的一半,求B的最大值.
参考答案:
【答案】(1)360;36;(2)答案见解析;(3)84.
【解析】
(1)根据“至善数”和“明德数”的定义计算即可得答案;(2)设A的十位数字为a,个位数字为b,分别写出A的“至善数”和“明德数”,求差,化简,表示出9的倍数,即可证明;(3)设B的十位数字为a,个位数字为b,分别写出B的“至善数”和“明德数”的各个数位上的数字之和,“明德数”的个位可能存在进位,故分两类计算即可.
解:(1)在3和0之间添上数字6,
∴30的“至善数是360;“明德数“是30+6=36
故答案为:360;36.
(2)证明:设A的十位数字为a,个位数字为b
则其“至善数与“明德数“分别为:
100a+60+b;10a+b+6
它们的差为:
100a+60+b-(10a+b+6)
=90a+54
=9(10a+6)
∴其“至善数与“明德数“之差能被9整除.
(3)设B的十位数字为a,个位数字为b
则B的至善数的各位数字之和是a+6+b
B的明德数各位数字之和是a+b+6(当0≤b<4时)或a+1+(6+b-10)(当4≤b≤9时)
由题意得:0≤b<4时,a+b+6=
(a+6+b)
∴a+b=-6,不符合题意;
当4≤b≤9时,a+1+(6+b-10)=
(a+6+b)
∴a+b=12
∴当b=4,a=8时,B最大,最大值为84.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,有一个数字迷宫,﹣2在迷宫的第一个拐角,3在第2个拐角,5在第3个拐角,7在第4个拐角,…那么第101个拐角是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2﹣5ax﹣4交x轴于A,B两点(点A位于点B的左侧),交y轴于点C,过点C作CD∥AB,交抛物线于点D,连接AC、AD,AD交y轴于点E,且AC=CD,过点A作射线AF交y轴于点F,AB平分∠EAF.
(1)此抛物线的对称轴是 ;
(2)求该抛物线的解析式;
(3)若点P是抛物线位于第四象限图象上一动点,求△APF面积S△APF的最大值,以及此时点P的坐标;
(4)点M是线段AB上一点(不与点A,B重合),点N是线段AD上一点(不与点A,D重合),则两线段长度之和:MN+MD的最小值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)(﹣8)﹣(﹣15)+(﹣9)﹣(﹣12)
(2)7
+(﹣6.5)+3
+(﹣1.25)+2
(3)(﹣81)÷(﹣2
)×
÷(﹣8)(4)

(5)

(6)

-
科目: 来源: 题型:
查看答案和解析>>【题目】随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次统计共抽查了 名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为 ;
(2)将条形统计图补充完整;
(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?
(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中.设小明出发第t分钟的速度为v米/分,离家的距离为s米.v与t之间的部分图象、s与t之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是( )分钟.

A. 4.5B. 8.25C. 4.5 或8.25D. 4.5 或 8.5
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知数轴上有三点A、B、C,若用AB表示A、B两点的距离,AC表示A、C两点的距离,且AB=
AC,点A、点C对应的数是分别是a、c,且|a+40|+|c﹣20|=0.
(1)求BC的长.
(2)若点P、Q分别从A、C两点同时出发向左运动,速度分别为2个单位长度每秒、5个单位长度每秒,则运动了多少秒时,Q到B的距离与P到B的距离相等?
(3)若点P、Q仍然以(2)中的速度分别从A、C两点同时出发向左运动,2秒后,动点R从A点出发向右运动,点R的速度为1个单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,点R运动了多少秒时恰好满足MN+AQ=31;并求出此时R点所对应的数.
相关试题