【题目】如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到0.1米)
![]()
参考答案:
【答案】100米.
【解析】试题分析:在直角△ABD中,利用∠ADB的正切值求得BD的长,从而根据CF=DF+CD求出CF的长度,然后根据直角△CEF的三角函数求出EF的长.
试题解析:在直角△ABD中,BD=
=
=41
(米),则DF=BD﹣OE=41
﹣10(米),
CF=DF+CD=41
﹣10+40=41
+30(米),
则在直角△CEF中,EF=CFtanα=41
+30≈41×1.7+30≈99.7≈100(米).
答:点E离地面的高度EF是100米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克)
…
34.8
32
29.6
28
…
售价x(元/千克)
…
22.6
24
25.2
26
…
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知线段MN=10cm,点C是直线MN上一点,NC=4cm,若P是线段MN的中点,Q是线段NC的中点,则线段PQ的长度是( )
A.7cmB.7cm或3cmC.5cmD.3cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知将一矩形纸片ABCD折叠,使顶点A与C重合,折痕为EF.
(1)求证:CE=CF;
(2)若AB =8 cm,BC=16 cm,连接AF,写出求四边形AFCE面积的思路.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB、CD相交于点O,∠BOC=80°,OE是∠BOC的角平分线,OF是OE的反向延长线.
(1)求∠2、∠3的度数;
(2)说明OF平分∠AOD的理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】关于x的一元二次方程

(1)求证:方程总有两个不相等的实数根。
(2)m为何整数时,此方程的两个根都是正整数?
(3)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求m的值。
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市决定在全市中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,幸福中学为了了解学生的上学方式,在本校范围内随机抽查了部分学生,将收集的数据绘制成如下两副不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.
(1)m= %,这次共抽取 名学生进行调查;
(2)求骑自行车上学的人数?并补全条形图;
(3)在这次抽样调查中,采用哪种上学方式的人数最多?
(4)在扇形统计图中,步行所对应的扇形的圆心角的度数是多少?

相关试题