【题目】如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF , 其中正确的是( ) ![]()
A.①③
B.②③
C.①④
D.②④
参考答案:
【答案】C
【解析】解:∵四边形ABCD是正方形, ∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,
在△AFD和△AFB中,
,
∴△AFD≌△AFB,
∴S△ABF=S△ADF , 故①正确,
∵BE=EC=
BC=
AD,AD∥EC,
∴
=
=
=
,
∴S△CDF=2S△CEF , S△ADF=4S△CEF , S△ADF=2S△CDF ,
故②③错误④正确,
故选C.![]()
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A'B'OC'.

(1)若抛物线过点C,A,A',求此抛物线的解析式;
(2)求平行四边形ABOC和平行四边形A'B'OC'重叠部分△OC'D的周长;
(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA'的面积最大?最大面积是多少?并求出此时M的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】不等式组
的解集在数轴上表示为( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的袋子里,有5个除颜色外,其他都相同的小球,其中有3个是红球,2个是绿球,每次拿一个球然后放回去,拿2次,则至少有一次取到绿球的概率是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向向右平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点F是等边△ABC边CA延长线上一点,点D是线段BF上一点,且BC=CD,CD交AB于点E,若AE=6,CE=14,则AF= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料:我们在学习二次根式时,式子
有意义,则x≥0;式子
有意义,则x≤0;若式子
+
有意义,求x的取值范围. 这个问题可以转化为不等式组来解决,即求关于x的不等式组x≥0,x≤0的解集,解这个不等式组,得x=0. 请你运用上述的数学方法解决下列问题:(1)式子
+
有意义,求x的取值范围;(2)已知y=
+
-3,求
的值.
相关试题