【题目】如图,四边形ABCD和四边形EFBC均为正方形,点D在EC上.如果线段AB的长为5,则△BDF的面积为_____.
![]()
参考答案:
【答案】12.5
【解析】
设出正方形EFCG的边长为a,表示出ED与BG,求出三角形EFD的面积,由正方形EFCG的面积-三角形EFD的面积得到四边形DCGF的面积,求出三角形BCD的面积,三角形BDF面积=三角形BCD面积+四边形DCGF的面积-三角形BGF的面积,求出即可.
设正方形EFGC的边长为a,即EC=EF=CG=FG=a,
∴ED=ECDC=a5,BG=BC+CG=a+5,
∴S△EFD=12a(a5),
∴S四边形DCGF=a212a(a5),
∵S△BCD=12×52=12.5,S△BCF=12a(a+5),
∴S△BDF=S△BCD+S四边形DCGFS△BCF=12.5+a212a(a5)12a(a+5)=12.5,
故答案为:12.5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将边长为a与b、对角线长为c的长方形纸片ABCD,绕点C顺时针旋转90°得到长方形FGCE,连接AF.通过用不同方法计算梯形ABEF的面积可验证勾股定理,请你写出验证的过程.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:

(1)这次活动一共调查了名学生;
(2)补全条形统计图;
(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;
(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是人. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为
的大正方形,两块是边长都为
的小正方形,五块是长为
、宽为
的全等小矩形,且
>
.(以上长度单位:cm)(1)观察图形,可以发现代数式
可以因式分解为 ;(2)若每块小矩形的面积为10
,四个正方形的面积和为58
,试求图中所有裁剪线(虚线部分)长之和.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=
(x>0)相交于点P(1,m ).
(1)求k的值;
(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q();
(3)若过P、Q二点的抛物线与y轴的交点为N(0,
),求该抛物线的函数解析式,并求出抛物线的对称轴方程.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学数学活动小组为了调查居民的用水情况,从某社区的1500户家庭中随机抽取了30户家庭的月用水量,结果如下表所示:
月用水量(吨)
3
4
5
7
8
9
10
户 数
4
3
5
11
4
2
1
(1)求这30户家庭月用水量的平均数,众数和中位数;
(2)根据上述数据,试估计该社区的月用水量;
(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m(吨),家庭月用水量不超过m(吨)的部分按原价收费,超过m吨部分加倍收费,你认为上述问题中的平均数、众数、中位数中哪一个量作为月基本用水量比较合理?简述理由。
相关试题