【题目】如图,在
中,
,
,
,点
为
边上一动点,
于点
,
于点
,连结
,点
为
的中点,则
的最小值为________.
![]()
参考答案:
【答案】![]()
【解析】
根据矩形的性质就可以得出,EF,AP互相平分,且EF=AP,垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.
:∵四边形AEPF是矩形,
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交点就是M点.
∵当AP的值最小时,AM的值就最小,
∴当AP⊥BC时,AP的值最小,即AM的值最小.
∵
AP.BC=
AB.AC,
∴AP.BC=AB.AC.
在Rt△ABC中,由勾股定理,得
BC=5.
∵AB=3,AC=4,
∴5AP=3×4
∴AP=
.
∴AM=
.
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,
的垂直平分线
交
于点
,交
于点
,且
,添加一个条件,能证明四边形
为正方形的是________.①
; ②
; ③
; ④
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.
(1)若∠B=35°,∠ACB=85°,求∠E得度数.
(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,△ABC是等腰三角形,AB=AC,点D,E,F分别在AB,BC,AC边上,且BD=CE,BE=CF.
(1)求证:△DEF是等腰三角形;
(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场购进甲、乙两种商品,甲种商品共用了
元,乙种商品共用了
元.已知乙种商品每件进价比甲种商品每件进价多
元,且购进的甲、乙两种商品件数相同.
求甲、乙两种商品的每件进价;
该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为
元,乙种商品的销售单价为
元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的九折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于
元,问甲种商品按原销售单价至少销售多少件? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在
中,
、
分别平分
与它的邻补角
,
于
,
于
,直线
分别交
、
于
、
.
求证:四边形
为矩形;
试猜想
与
的关系,并证明你的猜想;
如果四边形
是菱形,试判断
的形状,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】仔细阅读下面材料,然后解决问题:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”.例如:
,
;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:
,
.我们知道,假分数可以化为带分数,例如:
=2+
=2
,类似的,假分式也可以化为“带分式”(整式与真分式和的形式),例如:
=1+
.(1)将分式
化为带分式;(2)当x取哪些整数值时,分式
的值也是整数?
相关试题