【题目】如图,在长方形ABCD中,AB=4,BC=7,点P是BC边上与点B不重合的动点,过点P的直线交CD的延长线于点R,交AD于点Q(点Q与点D不重合),且∠RPC=45°.设BP=x,梯形ABPQ的面积为y,求y与x之间的函数关系式,并求出自变量x的取值范围.
![]()
参考答案:
【答案】y=4x+8(0<x<3).
【解析】
由梯形面积公式S=
(AQ+BP)×AB,设BP=x,AB=4,需求得AQ,又∠RPC=45,AQ=AD-QD,QD=RD=RC-CD=PC-CD,由此得出y与x之间的函数关系;对于自变量x的取值范围,求临界条件Q与D重合时,BP=x=3,又Q与D不重合,故x<3.
如图,过点D作DP′∥PQ,交BC于点P′,
则∠DP′C=∠RPC=45°,
∴P′C=CD=4,∴BP′=3.∴BP<3.
∵BP=x,∴PC=7-x.
在Rt△PCR中,∠C=90°,
∠RPC=45°,
∴CR=PC=7-x.
∴QD=RD=CR-CD
=7-x-4
=3-x,
∴AQ=AD-QD
=7-(3-x)
=4+x.
∴y=
(BP+AQ)·AB
=
(x+4+x)×4
=4x+8(0<x<3).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).

(1)求抛物线的函数表达式;
(2)当0<x<3时,求线段CD的最大值;
(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;
(4)过点B,C,P的外接圆恰好经过点A时,x的值为 . (直接写出答案) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与点A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F、D.

(1)问题发现:直接写出∠NDE=度;
(2)拓展探究:试判断,如图②当∠EAC为钝角时,其他条件不变,∠NDE的大小有无变化?请给出证明.
(3)如图③,若∠EAC=15°,BD=
,直线CM与AB交于点G,其他条件不变,请直接写出AC的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人进行比赛的路程与时间的关系如图所示.
(1)这是一场________米比赛;
(2)前一半赛程内________的速度较快,最终________赢得了比赛;
(3)两人第________秒在途中相遇,相遇时距终点________米;
(4)甲在前8秒的平均速度是多少?甲在整个赛程的平均速度是多少?乙在前8秒的平均速度是多少?乙在整个赛程的平均速度是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为
的线段的概率为( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】气温随着高度的升高而下降,下降的一般规律是从地面到高空11 km处(包括11 km),每升高1 km气温下降6 ℃;高于11 km时,气温不再发生变化,地面的气温为20 ℃时,设高空中x km处的气温为y ℃.
(1)当0≤x≤11时,求y和x之间的关系式;
(2)画出气温随高度(包括高于11 km)变化的图像;
(3)在离地面4.5 km及14 km的高空处,气温分别是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某仓库有甲、乙、丙三辆运货车,每辆车只负责进货或出货,其中丙车每小时的运输量最多,乙车每小时的运输量最少,且乙车每小时的运输量为6吨.如图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图像,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙车工作.
(1)你能确定甲、乙、丙三辆车哪辆是出货车吗?并说明理由.
(2)若甲、乙、丙三辆车一起工作,一天工作8小时,则仓库的库存量增加多少?

相关试题