【题目】甲、乙两人进行比赛的路程与时间的关系如图所示.
(1)这是一场________米比赛;
(2)前一半赛程内________的速度较快,最终________赢得了比赛;
(3)两人第________秒在途中相遇,相遇时距终点________米;
(4)甲在前8秒的平均速度是多少?甲在整个赛程的平均速度是多少?乙在前8秒的平均速度是多少?乙在整个赛程的平均速度是多少?
![]()
参考答案:
【答案】(1)100;(2)乙;甲;(3)8;25;(4)甲在前8秒的平均速度是
(米/秒),甲在整个赛程的平均速度是10(米/秒),乙在前8秒的平均速度是
(米/秒),乙在整个赛程的平均速度是
(米/秒).
【解析】
(1)根据图像直接解答;(2) 根据图像直接解答;(3) 根据图像直接解答;(4)根据路程与时间的关系图作答.
(1)100;(2)乙;甲;(3)8;25
(4)甲在前8秒的平均速度是75÷8=
(米/秒),甲在整个赛程的平均速度是100÷10=10(米/秒),乙在前8秒的平均速度是75÷8=
(米/秒),乙在整个赛程的平均速度是100÷12=
(米/秒).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是某航空公司托运行李的费用y(元)与行李的质量x(千克)之间的关系,由图可以看出:

(1)当行李质量为30千克时,行李托运费是________元;
(2)当行李质量为________千克时,行李托运费是600元;
(3)每位旅客最多可以免费携带________千克的行李.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).

(1)求抛物线的函数表达式;
(2)当0<x<3时,求线段CD的最大值;
(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;
(4)过点B,C,P的外接圆恰好经过点A时,x的值为 . (直接写出答案) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与点A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F、D.

(1)问题发现:直接写出∠NDE=度;
(2)拓展探究:试判断,如图②当∠EAC为钝角时,其他条件不变,∠NDE的大小有无变化?请给出证明.
(3)如图③,若∠EAC=15°,BD=
,直线CM与AB交于点G,其他条件不变,请直接写出AC的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长方形ABCD中,AB=4,BC=7,点P是BC边上与点B不重合的动点,过点P的直线交CD的延长线于点R,交AD于点Q(点Q与点D不重合),且∠RPC=45°.设BP=x,梯形ABPQ的面积为y,求y与x之间的函数关系式,并求出自变量x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为
的线段的概率为( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】气温随着高度的升高而下降,下降的一般规律是从地面到高空11 km处(包括11 km),每升高1 km气温下降6 ℃;高于11 km时,气温不再发生变化,地面的气温为20 ℃时,设高空中x km处的气温为y ℃.
(1)当0≤x≤11时,求y和x之间的关系式;
(2)画出气温随高度(包括高于11 km)变化的图像;
(3)在离地面4.5 km及14 km的高空处,气温分别是多少?
相关试题