【题目】如图,点A、B分别在反比例函数y=
(x>0)、y=
(x>0)的图象上,且∠AOB=90°,∠B=30°,求y=
的表达式.
![]()
参考答案:
【答案】y=-
.
【解析】过A作AC垂直于y轴,过B作BD垂直于y轴,易证△AOC∽△OBD,利用反比例函数k的几何意义求出两三角形的面积,得出面积比,在直角三角形AOB中,利用锐角三角函数定义即可求出tan∠B的值,即OA与OB的比值,利用面积比等于相似比的平方,即可求出k值.
如图,过A作AC⊥y轴于点C,过B作BD⊥y轴于点D,
则有∠ACO=∠BDO=90°,
∴∠AOC+∠OAC=90°,
∵OA⊥OB,∴∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△AOC∽△OBD,
∵点A、B分别在反比例函数y=
(x>0)、y=
(x>0)的图象上,
∴S△AOC=
,S△OBD=
,
S△AOC∶S△BOD=1∶|k|,
∴
=1∶|k|,
在Rt△AOB中,tanB=
=
,
∴1∶|k|=1∶3,∴|k|=3,
∵y=
(x>0)的图象在第四象限,∴k=-3,
故y=
(x>0)的表达式为y=-
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,用棋子摆成的“上”字:

第一个“上”字 第二个“上”字 第三个“上”字
如果按照以上规律继续摆下去,那么通过观察,可以发现:
(1)第四、第五个“上”字分别需用 和 枚棋子.
(2)第n个“上”字需用 枚棋子.
(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①点(-ab,c)在第四象限;②a+b+c<0;③
>1;④2a+b>0.其中正确的是_______(填序号).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,□ABCD的对角线AC,BD相交于点O,E、F、G、H分别是OA、OB、OC、OD的中点,那么□ABCD与四边形EFGH是否是位似图形?为什么?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.

(1)求证:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在合肥大蜀山山顶有一斜坡AP的坡度为1∶2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座安徽卫视发射塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°,求:
(1)坡顶A到地面PQ的距离;
(2)发射塔BC的高度(结果保留为整数,参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01,tan14°≈0.25).


-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在平面直角坐标系中,一次函数y=
x+3的图像与y轴交于点A,点M在正比例函数y=
x的图像x>0的那部分上,且MO=MA(O为坐标原点).
(1)求线段AM的长;
(2)若反比例函数y=
的图像经过点M关于y轴的对称点M′,求反比例函数解析式,并直接写出当x>0时,
x+3与
的大小关系.
相关试题