【题目】如图,将△ABC沿射线BC方向平移3cm得到△DEF.若△ABC的周长为14cm,则四边形ABFD的周长为( )
![]()
A. 14cm B. 17cm C. 20cm D. 23cm
参考答案:
【答案】C
【解析】
先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为14cm得到AB+BC+AC=14cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD=20(cm),于是得到四边形ABFD的周长为20cm.
∵△ABC沿BC方向平移3cm得到△DEF,
∴DF=AC,AD=CF=3cm,
∵△ABC的周长为14cm,即AB+BC+AC=14cm,
∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=14+3+3=20(cm),
即四边形ABFD的周长为20cm.
故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.

(1)求证:△DEC≌△EDA;
(2)求DF的值;
(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,
),顶点坐标为N(﹣1,
),且与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式;
(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;
(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N。
(1)求证:MN=AM+BN;

(2)若过点C在△ABC内作直线MN,AM⊥MN于M,BN⊥MN于N,则AM、BN与MN之间有什么关系?请说明理由。

-
科目: 来源: 题型:
查看答案和解析>>【题目】某同学在计算3(4+1)(42+1)时,把3写成(4﹣1)后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4﹣1)(4+1)(42+1)=(42﹣1)(42+1)=(42)2﹣12=256﹣1=255.请借鉴该同学的方法计算(2+1)(22+1)(24+1)(28+1)…(22048+1)=______
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)请用两种不同的方法列代数式表示图1阴影部分的面积.
方法①:__________________________;
方法②:____________________________;
(2)根据(1)写出一个等式:__________________________.

(3)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.
试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是

A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
相关试题