【题目】如图,点A,B在反比例函数
的图象上,点C,D在反比例函数
的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为
,则k的值为( )
![]()
A. 4 B. 3 C. 2 D. ![]()
参考答案:
【答案】B
【解析】
分析: 首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为
,列出方程,求解得出答案.
详解: 把x=1代入
得:y=1,
∴A(1,1),把x=2代入
得:y=
,
∴B(2,
),
∵AC//BD// y轴,
∴C(1,K),D(2,
)
∴AC=k-1,BD=
-
,
∴S△OAC=
(k-1)×1,
S△ABD=
(
-
)×1,
又∵△OAC与△ABD的面积之和为
,
∴
(k-1)×1+
(
-
)×1=
,解得:k=3;
故答案为B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(11·西宁)(本小题满分7分)给出三个整式a2,b2和2ab.
(1)当a=3,b=4时,求a2+b2+2ab的值;
(2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写也你所选的式子及因式分解的过程.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知A、B两地相距2.4km,甲骑车匀速从A地前往B地,如图表示甲骑车过程中离A地的路程y(km)与他行驶所用的时间x(min)之间的关系.根据图像解答下列问题:
(1)甲骑车的速度是 km/min;
(2)若在甲出发时,乙在甲前方0.6km处,两人均沿同一路线同时出发匀速前往B地,在第3分钟甲追上了乙,两人到达B地后停止.请在下面同一平面直角坐标系中画出乙离A地的距离y乙(km)与所用时间x(min)的关系的大致图像;
(3)乙在第几分钟到达B地?
(4)两人在整个行驶过程中,何时相距0.2km?

-
科目: 来源: 题型:
查看答案和解析>>【题目】反比例函数y=
的图象经过点A(﹣1,2),则当x>1时,函数值y的取值范围是( )
A.y>﹣1
B.﹣1<y<0
C.y<﹣2
D.﹣2<y<0 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知⊙O为△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D
(1)如图1,求证:BD=ED;
(2)如图2,AD为⊙O的直径.若BC=6,sin∠BAC=
,求OE的长. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正比例函数y=ax与反比例函数
的图象有一个公共点A(1,2).
(1)求这两个函数的表达式;
(2)画出草图,根据图象写出正比例函数值大于反比例函数值时x的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有( )个.

A.145 B.146 C.180 D.181
相关试题