【题目】如图,在矩形ABCD中,BC=5,AB=3,分别经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是 . ![]()
参考答案:
【答案】![]()
【解析】解:如图,设GH的中点为O, 过O点作OM⊥AC,过B点作BN⊥AC,垂足分别为M、N,![]()
在Rt△ABC中,BC=5,AB=3,
∴AC=
=
,
由面积法可知,BNAC=ABBC,
解得BN=
,
∵∠B=90°,
∴GH为⊙O的直径,点O为过B点的圆的圆心,
∵⊙O与AC相切,
∴OM为⊙O的半径,
∴BO+OM为直径,
又∵BO+OM≥BN,
∴当BN为直径时,直径的值最小,
此时,直径GH=BN=
,
同理可得:EF的最小值为
,
∴EF+GH的最小值是
=
.
所以答案是:
.
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等,以及对切线的性质定理的理解,了解切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形一共有1个平行四边形,第②个图形一共有5个平形四边形,第③个图形一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数为__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于点C,O是坐标原点,已知点B的坐标是(3,0),tan∠OAC=3;

(1)求该抛物线的函数表达式;
(2)点P在x轴上方的抛物线上,且∠PAB=∠CAB,求点P的坐标;
(3)若平行于x轴的直线与抛物线交于点M、N(M点在N点左侧),
①若以MN为直径的圆与x轴相切,求该圆的半径;
②若Q(m,4)是直线MN上一动点,当以点C、B、Q为顶点的三角形的面积等于6时,请直接写出符合条件的m值,为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如果100个乒乓球中有20个红色的,那么在随机抽出的20个乒乓球中( )
A.刚好有4个红球
B.红球的数目多于4个
C.红球的数目少于4个
D.以上都有可能 -
科目: 来源: 题型:
查看答案和解析>>【题目】在下列网格中建立平面直角坐标系如图,每个小正方形的边长均为1个单位长度.已知A(1,1)、B(3,4)和C(4,2).
(1)在图中标出点A、B、C.
(2)将点C向下平移3个单位到D点,将点A先向左平移3个单位,再向下平移1个单位到E点,在图中标出D点和E点.
(3)求△EBD的面积S△EBD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算题
(1)计算:(
)2÷(﹣2)﹣3
(2)解方程:
=
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.
证明:∵ ,
∴∠CDA=90°,∠DAB=90° ( ).
∴∠1+∠3=90°,∠2+∠4=90°.
又∵∠1=∠2,
∴ ( ),
∴DF∥AE ( ).

相关试题