【题目】如图,在△ABC中,CD⊥AB,垂足为D,E是AC边上一点,EH⊥AB,垂足为H,∠1=∠2.
(1)试说明DF∥AC;
(2)若∠A=38°,∠BCD=45°,求∠3的度数.
![]()
参考答案:
【答案】(1)详见解析;(2)97°
【解析】
(1)先根据垂直定义得出∠CDB=∠EHB=90°,根据平行线判定可得出CD∥EH,故可得出∠1=∠ACD,推出∠2=∠ACD,根据平行线的判定即可得出结论;
(2)先根据CD⊥AB得出∠BDC=90°,由直角三角形的性质得出∠B的度数,故可得出∠ACB的度数,再根据平行线的性质即可得出结论.
解:(1)DF∥AC.
理由是:∵CD⊥AB,EH⊥AB,
∴∠CDB=∠EHB=90°,
∴CD∥EH.
∴∠1=∠ACD,
∵∠1=∠2,
∴∠2=∠ACD,
∴DF∥AC;
(2)∵CD⊥AB,
∴∠BDC=90°.
∵∠BCD=45°,
∴∠B=90°﹣45°=45°.
∵∠A=38°,
∴∠ACB=180°-∠A-∠B=97°.
∵由(1)知DF∥AC,
∴∠3=∠ACB=97°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在弧
上.(1)求∠E的度数;
(2)连接OD、OE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明在数学课中学习了《解直角三角形》的内容后,双休日组织教学兴趣小组的小伙伴进行实地测量.如图,他们在坡度是i=1:2.5的斜坡DE的D处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据
≈1.41,
≈1.73供选用,结果保留整数)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公交车每天的支出费用为600元,每天的乘车人数x(人)与每天利润(利润=票款收入﹣支出费用)y(元)的变化关系如下表所示(每位乘客的乘车票价固定不变):
x(人)
…
200
250
300
350
400
…
Y(元)
…
﹣200
﹣100
0
100
200
…
根据表格中的数据,回答下列问题:
(1)在这个变化关系中,自变量是什么?因变量是什么?
(2)若要不亏本,该公交车每天乘客人数至少达到多少?
(3)请你判断一天乘客人数为500人时,利润是多少?
(4)试写出该公交车每天利润y(元)与每天乘车人数x(人)的关系式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个均匀的转盘被平均分成9等份,分别标有1,2,3,4,5,6,7,8,9这9个数字.转动转盘,当转盘停止后,指针指向的数字即为转出的数字.
小亮和小芳两人玩转盘游戏,对游戏规则,小芳提议:若转岀的数字是3的倍数,小芳获胜,若转出的数字是4的倍数,小亮获胜.
(1)你认为小芳的提议合理吗?为什么?
(2)利用这个转盘,请你为他俩设计一种对两人都公平的游戏规则.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边三角形ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=
,则△ABC的边长为____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,△ABC(如图).
(1)利用尺规按下列要求作图(保留作图痕迹,不写作法):
①作∠BAC的平分线AD,交BC于点D;
②作AB边的垂直平分线EF,分别交AD,AB于点E,F.
(2)连接BE,若∠ABC=60°,∠C=40°,求∠AEB的度数.

相关试题