【题目】已知直线y=kx+b经过点A(3,7)和B(﹣8,-4).
(1)求直线的解析式;
(2)求出该直线与x轴、y轴的交点坐标。并求出直线与两坐标轴围成三角形的面积。
参考答案:
【答案】(1)y=x+4;(2)(-4,0),(0,4),8.
【解析】
(1)利用待定系数法即可求解;
(2)在y=x+4中,令x=0,求得y的值,即可求得与y轴的交点;令y=0,即可求得与x轴的交点;利用三角形的面积公式即可直接求解.
解:(1)把A、B两点分别代入y=kx+b,得:
,
解得:
,
∴一次函数的解析式为:
.
(2)在函数
中,令x=0,有y=4,
令y=0,有x=-4,
∴函数与x轴的交点坐标为:(-4,0),与y轴的交点坐标为:(0,4)
∴围成的三角形面积为:![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,圆柱形玻璃杯,高为
,底面周长为
,在杯内离杯底
的点
处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿
与蜂蜜相对的点
处,则蚂蚁到达蜂蜜的最短距离为( )
.
A. 15B.
C. 12D. 18 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2
.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;
(2)若∠BAC=60°,DE=
,求图中阴影部分的面积;(3)若
,DF+BF=8,如图2,求BF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,A(0,2
),动点B、C从原点O同时出发,分别以每秒1个单位和每秒2个单位长度的速度沿x轴正方向运动,以点A为圆心,OB的长为半径画圆;以BC为一边,在x轴上方作等边△BCD.设运动的时间为t秒,当⊙A与△BCD的边BD所在直线相切时,t的值为( )
A.
B.
C. 4
+6 D. 4
-6 -
科目: 来源: 题型:
查看答案和解析>>【题目】某小区内有一块如图所示的三角形空地ABC,计划将这块空地建成一个花园,以美化小区环境,预计花园每平方米造价为25元,小区修建这个花园需要投资多少元?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,b满足
+(c-7)2=0.(1) a= ,b= ,c= .
(2) 若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合.
(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)
(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:

(1)在这次调查中,喜欢篮球项目的同学有 人,在扇形统计图中,“乒乓球”的百分比为 %,如果学校有800名学生,估计全校学生中有 人喜欢篮球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
相关试题