【题目】如图,圆柱形玻璃杯,高为
,底面周长为
,在杯内离杯底
的点
处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿
与蜂蜜相对的点
处,则蚂蚁到达蜂蜜的最短距离为( )
.
![]()
A. 15B.
C. 12D. 18
参考答案:
【答案】A
【解析】
过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.
解:沿过A的圆柱的高剪开,得到矩形EFGH,
过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,
![]()
∵AE=A′E,A′P=AP,
∴AP+PC=A′P+PC=A′C,
∵CQ=
×18cm=9cm,A′Q=12cm-4cm+4cm=12cm,
在Rt△A′QC中,由勾股定理得:A′C=
=15cm,
故答案为:A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如
就是完全对称式(代数式中
换成b,b换成
,代数式保持不变).下列三个代数式:①
;②
;③
.其中是完全对称式的是( )A.①②B.①③C.②③D.①②③
-
科目: 来源: 题型:
查看答案和解析>>【题目】体育课上,老师为了解女学生定点投篮的情况,随机抽取8名女生进行每人4次定点投篮的测试,进球数的统计如图所示.

(1)求女生进球数的平均数、中位数;
(2)投球4次,进球3个以上(含3个)为优秀,全校有女生1200人,估计为“优秀”等级的女生约为多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某天早晨,小王从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是小王从家到学校这一过程中所走的路程 s(米)与时间 t(分)之间的关系.

(1)小王从家到学校的路程共_________米,从家出发到学校,小王共用了________分钟;
(2)小王吃早餐用了____________分钟;
(3)小王吃早餐以前和吃完早餐后的平均速度分别是多少米/分钟?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2
.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;
(2)若∠BAC=60°,DE=
,求图中阴影部分的面积;(3)若
,DF+BF=8,如图2,求BF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,A(0,2
),动点B、C从原点O同时出发,分别以每秒1个单位和每秒2个单位长度的速度沿x轴正方向运动,以点A为圆心,OB的长为半径画圆;以BC为一边,在x轴上方作等边△BCD.设运动的时间为t秒,当⊙A与△BCD的边BD所在直线相切时,t的值为( )
A.
B.
C. 4
+6 D. 4
-6 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线y=kx+b经过点A(3,7)和B(﹣8,-4).
(1)求直线的解析式;
(2)求出该直线与x轴、y轴的交点坐标。并求出直线与两坐标轴围成三角形的面积。
相关试题