【题目】如图所示,在以O为圆心的两个同心圆中,小圆的半径为1,AB与小圆相切于点A,与大圆相交于点B,大圆的弦BC⊥AB于点B,过点C作大圆的切线CD交AB的延长线于点D,连接OC交小圆于点E,连接BE、BO. ![]()
(1)求证:△AOB∽△BDC;
(2)设大圆的半径为x,CD的长为y: ①求y与x之间的函数关系式;
②当BE与小圆相切时,求x的值.
参考答案:
【答案】
(1)证明:
![]()
∵AB与小圆相切于点A,CD与大圆相切于点C,
∴∠OAB=∠OCD=90°,
∵BC⊥AB,
∴∠CBA=∠CBD=90°,
∵∠1+∠OBC=90°,∠2+∠OCB=90°,
又∵OC=OB,
∴∠OBC=∠OCB,
∴∠1=∠2,
∴△AOB∽△BDC
(2)解:
![]()
①过点O作OF⊥BC于点F,则四边形OABF是矩形,
∴BF=OA=1,
由垂径定理,得BC=2BF=2,
在Rt△AOB中,OA=1,OB=x
∴AB=
,
由(1)得△AOB∽△BDC
∴
,即
,
∴y=
;
②当BE与小圆相切时,OE⊥BE,
∵OE=1,OC=x,
∴EC=x﹣1,BE=AB=
,
在Rt△BCE中,根据勾股定理得:EC2+BE2=BC2,
即(x﹣1)2+(
)2=22,
解得:x1=2,x2=﹣1(舍去),
∴当BE与小圆相切时,x=2.
【解析】(1)由AB与小圆相切,CD与大圆相切,根据切线性质可得∠OAB与∠OCD相等,都为直角,又BC与AB垂直,根据垂直定义得到∠CBA与∠CBD都为直角,则∠1+∠OBC与∠2+∠OCB和都为90°,由OC=OB,根据“等边对等角”得到∠OBC=∠OCB,根据等角的余角相等,得到∠1=∠2,由两对对应角相等的两三角形相似得证;(2)①过O作OF垂直于BC,由三个角都为直角的四边形为矩形得到ABOF为矩形,根据矩形的对边相等,得到FB=OA,由OA的长得到FB的长,又BC为大圆的弦,利用垂径定理得到BC=2BF,从而求出BC的长,在直角三角形OAB中,由OA=1,OB=x,利用勾股定理表示出AB,由(1)得到的三角形相似得比例,把相应的值代入即可得到y与x的关系式;②当BE与小圆相切时,根据切线性质得到OE与BE垂直,由OE和OC表示出EC的长,根据切线长定理得到BE=BA,表示出EB,在直角三角形ECB中,由EC,EB及BC的长,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值.
【考点精析】根据题目的已知条件,利用勾股定理的概念和垂径定理的相关知识可以得到问题的答案,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,反比例函数y=
的图象与一次函数y=kx﹣3的图象在第一象限内相交于点A(4,m).
(1)求m的值及一次函数的解析式;
(2)若直线x=2与反比例和一次函数的图象分别交于点B、C,求线段BC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】“校园手机”现象越来越受到社会的关注.为了了解学生和家长对中学生带手机的态度,某记者随机调查了城区若干名学生和家长的看法,调查结果分为:赞成、无所谓、反对,并将调查结果绘制成如下不完整的统计表和统计图:学生及家长对中学生带手机的态度统计表
对象
人数
态度赞成
无所谓
反对
学生
80
30
90
家长
40
80
A

根据以上图表信息,解答下列问题:
(1)统计表中的A.
(2)统计图中表示家长“赞成”的圆心角的度数
(3)从这次接受调查的学生中,随机抽查一个,恰好是持“反对”态度的学生的概率是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.

(1)求证:四边形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线y=﹣
x+2与抛物线y=a (x+2)2相交于A、B两点,点A在y轴上,M为抛物线的顶点.
(1)请直接写出点A的坐标及该抛物线的解析式;
(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值范围;
(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】我市某中学八年级一班准备在“七一”组织参加红色旅游,班长把全班48名同学对旅游地点的意向绘制成了扇形统计图,其中“想去我市龙州县红八军纪念馆参加的学生数”的扇形圆心角为60°,则下列说法中正确的是( )
A.想去龙州县红八军纪念馆参加的学生占全班学生的60%
B.想去龙州县红八军纪念馆参观的学生有12人
C.想去龙州县红八军纪念馆参观的学生肯定最多
D.想去龙州县红八军纪念馆参观的学生占全班学生的
-
科目: 来源: 题型:
查看答案和解析>>【题目】李明为好友制作了一个如图所示的正方体礼品盒,在六个面上各有一字,连起来就是“祝取得好成绩”,其中“祝”的对面是“得”,“成”的对面是“绩”,则它的平面展开图可能是( )

A.
B.
C.
D.
相关试题