【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).![]()
(1)将△ABC以点O为旋转中心旋转90°,请画出旋转后的△A′B′C′;
(2)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
参考答案:
【答案】
(1)
解:如图1所示;将△ABC以点O为旋转中心逆时针旋转90°得到△A′B′C′,将△ABC以点O为旋转中心顺时针旋转90°得到△A″B″C″,
![]()
(2)
解:如图2,作点A关于x轴的对称点A′,连接A′B交x轴于点P,则点P即为所求点,
![]()
∵A(﹣3,2),
∴A′(﹣3,﹣2).
设直线A′B的解析式为y=kx+b(k≠0),
∵A′(﹣3,﹣2),B(0,4),
∴
,解得
,
∴直线A′B的解析式为y=2x+4,
∵当y=0时,x=﹣2,
∴P(﹣2,0)
【解析】(1)根据图形旋转的性质画出图形即可;(2)作点A关于x轴的对称点A′,连接A′B交x轴于点P,利用待定系数法求出直线A′B的解析式,进而可得出P点坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB绕点O旋转150°得到△OA′B′,则点A′的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校计划购买篮球、排球共20个,购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同。
(1)篮球和排球的单价各是多少元?
(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,

(1)求高台A比矮台B高多少米?
(2)求旗杆的高度OM;
(3)玛丽在荡绳索过程中离地面的最低点的高度MN.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.
小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).
请你回答:AP的最大值是 .
参考小伟同学思考问题的方法,解决下列问题:
如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是 .(结果可以不化简)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=10,AD=4,点P在边DC上,且△PAB是直角三角形,请在图中标出符合题意的点P,并直接写出PC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在长方形
中,
cm,
cm.现将其按下列步骤折叠:(1)将边
向边
折叠,使边
落在边
上,得到折痕
,如图②;(2)将
沿
折叠,
与
交于点
,如图③.则所得梯形
的周长等于( )
A.
cm B.
cmC.
cm D.
cm
相关试题