【题目】如图,AB是⊙O的直径,
,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.
(1)求证:直线BF是⊙O的切线;
(2)若OB=2,求BD的长.
![]()
参考答案:
【答案】(1)证明见解析;(2)BD=
.
【解析】(1)连接OC,由已知可得∠BOC=90°,根据SAS证明△OCE≌△BFE,根据全等三角形的对应角相等可得∠OBF=∠COE=90°,继而可证明直线BF是⊙O的切线;
(2),由(1)的全等可知BF=OC=2,利用勾股定理求出AF的长,然后由S△ABF=
,即可求出BD=
.
(1)连接OC,
∵AB是⊙O的直径,
,∴∠BOC=90°,
∵E是OB的中点,∴OE=BE,
在△OCE和△BFE中,
,
∴△OCE≌△BFE(SAS),
∴∠OBF=∠COE=90°,
∴直线BF是⊙O的切线;
(2)∵OB=OC=2,由(1)得:△OCE≌△BFE,
∴BF=OC=2,
∴AF=
,
∴S△ABF=
,
即4×2=2
BD,
∴BD=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC, ∠BAC=90°,D是斜边BC的中点,E,F分别是AB,AC边上的点,且DE⊥DF.

(1)判断DE和DF的数量关系,并说明理由;
(2)若BE=12,CF=5,求△DEF的面积。
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)9
(3x2)(3x2)(2)(1
x)2(1
x)2(3)(a2b1)(a2b1)
(4)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=
(a≠0)的图象在第二象限交于点A(m,2).与x轴交于点C(﹣1,0).过点A作AB⊥x轴于点B,△ABC的面积是3.(1)求一次函数和反比例函数的解析式;
(2)若直线AC与y轴交于点D,求△BCD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.

(1)请直接写出y与x之间的函数关系式;
(2)如果每天获得160元的利润,销售单价为多少元?
(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】因式分解:
(1)
yx
;(2)(x2)(x4)+
-4.(3)(x24y2)216x2y2
(4)(p4)(p1)6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.
(1)如图1,请直接写出线段OE与OF的数量关系;
(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由
(3)若|CF﹣AE|=2,EF=2
,当△POF为等腰三角形时,请直接写出线段OP的长.
相关试题