【题目】把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.
![]()
例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.
(1)由图2,可得等式 ;
(2)利用(1)所得等式,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.
(3)如图3,将两个边长为a、b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab=20.请求出阴影部分的面积.
(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.
①请在下面的方框中用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图1、图2画出拼法并标注a、b;
![]()
②研究①拼图发现,可以分解因式2a2+5ab+2b2= .
参考答案:
【答案】(1)
;(2)45;(3)20;(4)①见解析,②
.
【解析】
(1)根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积;另一种是直接利用正方形的面积公式计算,由此即可得出答案;
(2)利用(1)中的等式直接代入即可求得答案;
(3)根据阴影部分的面积等于两个正方形的面积之和减去两个直角三角形的面积即可得;
(4)①依照前面的拼图方法,画出图形即可;
②参照题(1)的方法,根据面积的不同求解方法即可得出答案.
(1)由题意得:![]()
故答案为:
;
(2)![]()
∴![]()
![]()
![]()
;
(3)
四边形ABCD、四边形ECGF为正方形,且边长分别为a、b
,
,
,![]()
∵![]()
∴![]()
![]()
![]()
![]()
![]()
![]()
;
(4)①根据题意,作出图形如下:
![]()
②根据面积的不同求解方法得:![]()
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某电信公司推出甲、乙两种收费方式供手机用户选择:
甲种方式:每月收月租费5元,每分钟通话费为
元;乙种方式:不收月租费,每分钟通话费为
元;
请分别写出甲乙两种收费方式每月付费
、
元
与通话时间
分钟
之间函数表达式;
如何根据通话时间的多少选择付费方式,请给出你的方案. -
科目: 来源: 题型:
查看答案和解析>>【题目】
操作思考:如图1,在平面直角坐标系中,等腰
的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点
处
则
的长为______;
点B的坐标为______
直接写结果
感悟应用:如图2,在平面直角坐标系中,将等腰
如图放置,直角顶点
,点
,试求直线AB的函数表达式.
拓展研究:如图3,在直角坐标系中,点
,过点B作
轴,垂足为点A,作
轴,垂足为点C,P是线段BC上的一个动点,点Q是直线
上一动点
问是否存在以点P为直角顶点的等腰
,若存在,请求出此时P的坐标,若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在半径为6cm的⊙O中,点A是劣弧
的中点,点D是优弧
上一点,且∠D=30°,下列四个结论:
①OA⊥BC;②BC=6
;③sin∠AOB=
;④四边形ABOC是菱形.
其中正确结论的序号是( )
A.①③
B.①②③④
C.②③④
D.①③④ -
科目: 来源: 题型:
查看答案和解析>>【题目】一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量
(升)关于加满油后已行驶的路程
(千米)的函数图象.
(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;
(2)求
关于
的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程. -
科目: 来源: 题型:
查看答案和解析>>【题目】小敏思考解决如下问题:
原题:如图1,四边形ABCD中
,
,
点P,Q分别在四边形ABCD的边BC,CD上,
,求证:
.
______;
小敏进行探索,如图2,将点P,Q的位置特殊化,使
,
,点E,F分别在边BC,CD上,此时她证明了
请你证明此时结论;
受以上
的启发,在原题中,添加辅助线:如图3,作
,
,垂足分别为E,F,请你继续完成原题的证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为 .
相关试题