【题目】如图, ABC的中线ADBE相交于点F,下列结论正确的有

①SABD=SDCA② SAEF=SBDF③S四边形EFDC=2SAEF④SABC=3SABF

A. 1 B. 2 C. 3 D. 4


参考答案:

【答案】D

【解析】ADABC的中线,

SABD=SDCA=,故①正确;

BE分别是是ABC的中线,

SABE=SBCE=,

SABD=SDCA= SABE=SBCE,

SABE=SABD,

SABE- SABF =SABD- SABF,

∴SAEF=SBDF,故②正确;

∵△ABC的中线ADBE相交于点F

SABF =2SAEF.

SDCA=SABE,

SDCA- SAEF =SABE- SAEF,

SABF =S四边形EFDC,

S四边形EFDC=2SAEF,故③正确;

∵△ABC的中线ADBE相交于点F

SABE=.

SABC=2 SABE,

SABE=3 SABF,故④正确;

故选D.

关闭