【题目】已知一次函数y=kx+b的图象经过点A(1,2),B(0,4).
(1)求此函数的解析式.
(2)求原点到直线AB的距离.
参考答案:
【答案】(1)y=﹣2x+4;(2)
.
【解析】
(1)把A、B两点坐标代入y=kx+b中得到关于k、b的方程组,然后解方程组求出k、b即可得到一次函数解析式;
(2)根据一次函数图象上点的坐标特征,求出直线与x轴的交点C的坐标,然后利用勾股计算出AC的长,再利用面积法求原点到直线AB的距离.
(1)把A(1,2),B(0,4)代入y=kx+b得,
,解得
.
所以一次函数解析式为y=﹣2x+4;
(2)由y=﹣2x+4可知,直线与x轴的交点C的坐标为(2,0),
∴AC=
,
设原点到直线AB的距离为h,
则![]()
解得h=
,
所以原点到直线AB的距离为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.

(1)求y与x的函数关系式;
(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;
(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格纸中每个小正方形的边长为1,四边形ABCD的顶点都在格点上.
(1)在方格纸上建立平面直角坐标系,使四边形ABCD的顶点A,C的坐标分别为(﹣5,﹣1),(﹣3,﹣3),并写出点D的坐标;
(2)在(1)中所建坐标系中,画出四边形ABCD关于x轴的对称图形A1B1C1D1,并写出点B的对应点B1的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.
(1)根据劳格数的定义,填空:d(10)= , d(10﹣2)=;
(2)劳格数有如下运算性质: 若m、n为正数,则d(mn)=d(m)+d(n),d(
)=d(m)﹣d(n).
根据运算性质,填空:
=(a为正数),若d(2)=0.3010,则d(4)= , d(5)= , d(0.08)=;
(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x
1.5
3
5
6
8
9
12
27
d(x)
3a﹣b+c
2a﹣b
a+c
1+a﹣b﹣c
3﹣3a﹣3c
4a﹣2b
3﹣b﹣2c
6a﹣3b
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠BAC=90°,AB=5cm,AC=2cm,将△ABC绕顶点C按顺时针方向旋转45°至△A1B1C的位置,则线段AB扫过区域(图中的阴影部分)的面积为cm2 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在以点O为原点的平面直角坐标系中,一次函数y=﹣
x+1的图象与x轴交于点A,与y轴交于点B,点C在直线AB上,且OC=
AB,反比例函数y=
的图象经过点C,则所有可能的k值为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】市交警支队对某校学生进行交通安全知识宣传,事先以无记名的方式随机调查了该校部分学生闯红灯的情况,并绘制成如图所示的统计图.请根据图中的信息回答下列问题:

(1)本次共调查了多少名学生?
(2)如果该校共有1500名学生,请你估计该校经常闯红灯的学生大约有多少人;
(3)针对图中反映的信息谈谈你的认识.(不超过30个字)
相关试题