【题目】第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.
(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;
(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.
参考答案:
【答案】(1)P(选到女生)=
;(2)这个游戏不公平.理由见解析.
【解析】试题分析:(1)直接利用概率公式求出即可;
(2)利用树状图表示出所有可能进而利用概率公式求出即可.
试题解析:(1)∵现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人,
∴从这20人中随机选取一人作为联络员,P(选到女生)=
=
;
(2)如图所示:
![]()
牌面数字之和为:5,6,7,5,7,8,6,7,9,7,9,8,
∴偶数为:4个,P(得到偶数)=
=
,∴P(得到奇数)=
,∴甲参加的概率<乙参加的概率,∴这个游戏不公平.
-
科目: 来源: 题型:
查看答案和解析>>【题目】满足下列条件的三角形是锐角三角形、直角三角形还是钝角三角形.
(1)△ABC中,∠A=30°,∠C=∠B;
(2)三个内角的度数之比为1:2:3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品共用了160元.
(1)求A,B两种商品每件多少元?
(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果整式xn﹣2﹣5x+2是关于x的三次三项式,那么n等于( )
A.3
B.4
C.5
D.6 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.

(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;
(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论: ①
的值不变,②
的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.
(1)求该抛物线的解析式;
(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;
(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.
①求S与m的函数关系式;
②S是否存在最大值?若存在,求出最大值及此时点E的坐标; 若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的对角线交于点O , 以AD为边向外作Rt△ADE , ∠AED=90°,连接OE , DE=6,OE=
,则另一直角边AE的长为( ).
A.
B.2
C.8
D.10
相关试题