【题目】反比例函数
在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数
的图象于点M,△AOM的面积为3.![]()
(1)求反比例函数的解析式;
(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数
的图象上,求t的值.
参考答案:
【答案】
(1)解:∵△AOM的面积为3,
∴
|k|=3,
而k>0,
∴k=6,
∴反比例函数解析式为y= ![]()
(2)解:当以AB为一边的正方形ABCD的顶点D在反比例函数y=
的图象上,则D点与M点重合,即AB=AM,
把x=1代入y=
得y=6,
∴M点坐标为(1,6),
∴AB=AM=6,
∴t=1+6=7;
当以AB为一边的正方形ABCD的顶点C在反比例函数y=
的图象上,
则AB=BC=t-1,
∴C点坐标为(t,t-1),
∴t(t-1)=6,
整理为t2-t-6=0,解得t1=3,t2=-2(舍去),
∴t=3,
∴以AB为一边的正方形有一个顶点在反比例函数y=
的图象上时,t的值为7或3.
【解析】(1)由反比例的几何性质易得
=2×3=6,又因为k>0,所以k=6
(2)由正方形的四个角是直角,可得若顶点D在反比例函数y=
的图象上,则D点与M点重合,即AB=AM从而得到M点坐标为(1,6);若当以AB为一边的正方形ABCD的顶点C在反比例函数y=
的图象上,则AB=BC=t-1,得t1=3,t2=-2(舍去),∴t=3,t的值为7或3
【考点精析】利用比例系数k的几何意义对题目进行判断即可得到答案,需要熟知几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠1=80°,∠2=100°,∠C=∠D.
(1)判断AC与DF的位置关系,并说明理由;
(2)若∠C比∠A大20°,求∠F的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为2,E是BC的中点,以点A为中心,把△ABE绕点A顺时针旋转90°,设点E的对应点为F.

(1)画出旋转后的三角形.(尺规作图,保留作图痕迹,不写作法)
(2)求点E运动到点F所经过的路径的长 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,AB为半圆O的直径,C为圆上一点,AD平分∠BAC交半圆于点D,过点D作DE⊥AC,DE交AC的延长线于点E.

(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为2,DE=
,求线段AC的长 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知矩形ABCD的宽AD=8,点E在边AB上,P为线段DE上的一动点(点P与点D,E不重合),∠MPN=90°,M,N分别在直线AB,CD上,过点P作直线HK
AB,作PF⊥AB,垂足为点F,过点N作NG⊥HK,垂足为点G
(1)求证:∠MPF=∠GPN
(2)在图1中,将直角∠MPN绕点P顺时针旋转,在这一过程中,试观察、猜想:当MF=NG时,△MPN是什么特殊三角形?在图2中用直尺画出图形,并证明你的猜想;
(3)在(2)的条件下,当∠EDC=30°时,设EP=x,△MPN的面积为S,求出S关于x的解析式,并说明S是否存在最小值?若存在,求出此时x的值和△MPN面积的最小值;若不存在,请说明理由。 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:△ABC是等边三角形.
(1)如图,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.试判断BF与CF的数量关系,并加以证明;
(2)点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.若△BFD是等腰三角形,求∠FBD的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线
与x轴交于点A,B,与y轴负半轴交于点C且OB=OC,点P为抛物线上的一个动点,且点P位于x轴下方,点P与点C不重合。
(1)求抛物线的解析式
(2)若△PAC的面积为
,求点P的坐标
(3)若以A、B、C、P为顶点的四边形面积记作S,则S取何值时,对应的点P有且只有2个?
相关试题