【题目】(2016山西省)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg﹣5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):
方案A:每千克5.8元,由基地免费送货.
方案B:每千克5元,客户需支付运费2000元.
(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;
(2)求购买量x在什么范围时,选用方案A比方案B付款少;
(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.
![]()
参考答案:
【答案】(1)方案A:函数表达式为y=5.8x;方案B:函数表达式为y=5x+2000;(2)2000≤x<2500;(3)方案B买的苹果多.
【解析】试题分析:(1)根据数量关系列出函数表达式即可;(2)先求出方案A应付款y与购买量x的函数关系为
,方案B 应付款y与购买量x的函数关系为
,然后分段求出哪种方案付款少即可;(3)令y=20000,分别代入A方案和B方案的函数关系式中,求出x,比大小.
试题解析:(1)方案A:函数表达式为
.
方案B:函数表达式为![]()
(2)由题意,得
.
解不等式,得x<2500
∴当购买量x的取值范围为
时,选用方案A比方案B付款少.
(3)他应选择方案B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.

(1)求证:四边形CODE是矩形;
(2)若AB=5,AC=6,求四边形CODE的周长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABO的顶点A是双曲线y1=
与直线y2=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=
. 
(1)求这两个函数的解析式;
(2)求△AOC的面积;
(3)直接写出使y1>y2成立的x的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知一次函数的图象经过点(﹣2,﹣2)和点(2,4).
(1)求这个函数的解析式;
(2)判断点P(1,1)是否在此函数图象上,并说明理由.
(3)求这个函数的图象与坐标轴围成的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在 Rt△ABC,∠ACB=90°,AC=BC,分别过A、B作直线
的垂线,垂足分别为M、N.(1)求证:△AMC≌△CNB;
(2)若AM=3,BN=5,求AB的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.

(1)求OA、OB的长.
(2)若点E为x轴正半轴上的点,且S△AOE=
,求经过D、E两点的直线解析式及经过点D的反比例函数的解析式,并判断△AOE与△AOD是否相似.
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地做决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括最大值但不包括最小值),请你根据统计图解决下列问题:
(1)此次抽样调查的样本容量是
(2)补全左侧统计图,并求扇形统计图中“25吨~30吨”部分的圆心角度数.
(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?

相关试题