【题目】如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.![]()
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.![]()
参考答案:
【答案】
(1)
解:∵A(1,0),抛物线的对称轴为x=﹣1,
∴B(﹣3,0).
设抛物线的解析式为y=a(x+3)(x﹣1),
将点D的坐标代入得:5a=5,解得a=1,
∴抛物线的解析式为y=x2+2x﹣3
(2)
解:如图1所示:过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.
设点E(m,m2+2m﹣3),则F(m,﹣m+1).
∴EF=﹣m+1﹣m2﹣2m+3=﹣m2﹣3m+4
∴△ACE的面积=△EFA的面积﹣△EFC的面积=
EFAG﹣
EFHC=
EFOA=﹣
(m+
)2+
.
∴△ACE的面积的最大值为 ![]()
![]()
(3)
解:当AD为平行四边形的对角线时.
设点M的坐标为(﹣1,a),点N的坐标为(x,y).
∵平行四边的对角线互相平分,
∴
=
,
=
.
解得:x=﹣2,5﹣a.
将点N的坐标代入抛物线的解析式得:5﹣a=﹣3,
∴a=8.
∴点M的坐标为(﹣1,8).
当AD为平行四边形的边时.
设点M的坐标为(﹣1,a).
∵四边形MNAD为平行四边形,
∴点N的坐标为(﹣6,a+5)或(4,a﹣5).
∵将x=﹣6,y=a+5代入抛物线的解析式得:a+5=36﹣12﹣3,解得:a=16,
∴M(﹣1,16).
将x=4,y=a﹣5代入抛物线的解析式得:a﹣5=16+8﹣3,解得:a=26,
∴M(﹣1,26).
综上所述,当点M的坐标为(﹣1,26)或(﹣1,16)或(﹣1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形
【解析】(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x﹣1),将点D的坐标代入求得a的值即可;(2)过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m﹣3),则F(m,﹣m+1),则EF=﹣m2﹣3m+4,然后依据△ACE的面积=△EFA的面积﹣△EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;(3)当AD为平行四边形的对角线时.设点M的坐标为(﹣1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=﹣2代入求得对应的y值,然后依据
=
,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(﹣1,a).则点N的坐标为(﹣6,a+5)或(4,a﹣5),将点N的坐标代入抛物线的解析式可求得a的值.
【考点精析】本题主要考查了二次函数的图象和二次函数的性质的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,则下列四个结论:①AD上任意一点到点C,B的距离相等;②AD上任意一点到AB,AC的距离相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中正确的个数是( )

A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】按图中方式用火柴棒搭正方形

①搭1个正方形需要 根火柴棒;
②搭2个正方形需要 根火柴棒,搭3个正方形需要 根火柴棒;
③搭10个这样的正方形需要多少根火柴棒;
④搭100个这样的正方形需要多少根火柴棒?
⑤如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴交流。
⑥根据你的计算方法,搭200个这样的正方形需要多少根火柴棒?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,线段AB=8cm,C是线段AB上一点,AC=3.2cm,M是AB的中点,N是AC的中点.
(1)求线段CM的长;
(2)求线段MN的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.

(1)发现:在图1中,
=;
(2)应用:如图2,将△ADE绕点A旋转,请求出
的值;
(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示.设点A,B,C所对应数的和是p.

(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?
(2)若原点O在图中数轴上点C的右边,且CO=28,求p.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等边三角形,点D,E,F分别是AB,BC,CA上的点.
(1)若AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论;
(2)若△DEF是等边三角形,问AD=BE=CF成立吗?试证明你的结论.

相关试题