【题目】如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( ) ![]()
A.120°
B.180°
C.240°
D.300°
参考答案:
【答案】C
【解析】解:根据三角形的内角和定理得: 四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,
则根据四边形的内角和定理得:
∠1+∠2=360°﹣120°=240°.
故选C.
【考点精析】关于本题考查的三角形的内角和外角和多边形内角与外角,需要了解三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.

(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;
(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;
(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B.抛物线y=﹣
+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧.
(1)n=(用含m的代数式表示),点C的纵坐标是(用含m的代数式表示).
(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数表达式.
(3)设矩形BCDE的周长为d(d>0),求d与m之间的函数表达式.
(4)直接写出矩形BCDE有两个顶点落在抛物线上时m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列方程中,有两个相等实数根的方程是( )
A.x(x﹣1)=0
B.x2﹣x+1=0
C.x2﹣2=0
D.x2﹣2x+1=0 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知:n为正整数,点A1(x1 , y1),A2(x2 , y2),A3(x3 , y3),A4(x4 , y4)…An(xn , yn)均在直线y=x﹣1上,点B1(m1 , p1),B2(m2 , p2),B3(m3 , p3)…Bn(mn , pn)均在双曲线y=﹣
上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,A3B3⊥x轴,…,AnBn⊥x轴,BnAn+1⊥y轴,若点A1的横坐标为﹣1,则点A2017的坐标为( ) 
A.(﹣1,﹣2)
B.(2,1)
C.(
,﹣
)
D.(
,﹣2) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P是ABCD边AB上的一点,射线CP交DA的延长线于点E,请从图中找出一对相似三角形:

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O中,OB为半径,AB是⊙O的切线,OA与⊙O相交于点C,∠A=30°,OA=8,则阴影部分的面积是 .

相关试题