【题目】二次函数y=ax2+bx+c(a≠0)和正比例函数y=
x的图象如图所示,则方程ax2+(b﹣
)x+c=0(a≠0)的两根之和( ) ![]()
A.大于0
B.等于0
C.小于0
D.不能确定
参考答案:
【答案】A
【解析】解:设ax2+bx+c=0(a≠0)的两根为x1 , x2 , ∵由二次函数的图象可知x1+x2>0,a>0,
∴﹣
>0.
设方程ax2+(b﹣
)x+c=0(a≠0)的两根为m,n,则m+n=﹣
=﹣
+
,
∵a>0,
∴
>0,
∴m+n>0.
故选A.
设ax2+bx+c=0(a≠0)的两根为x1 , x2 , 由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣
)x+c=0(a≠0)的两根为m,n再根据根与系数的关系即可得出结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】用配方法解下列方程时,配方错误的是( )
A.x2+2x﹣99=0化为(x+1)2=100
B.
C.x2+8x+9=0化为(x+4)2=25
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD是BC边上的高,AE是∠BAC平分线.
(1)若∠B=38°,∠C=70°,求∠DAE的度数;
(2)若∠B>∠C,试探求∠DAE、∠B、∠C之间的数量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC,D为斜边AC延长线上一点,过D点作BC的垂线交其延长线于点E,在AB的延长线上取一点F,使得BF=CE,连接EF.
(1)若AB=2,BF=3,求AD的长度;
(2)G为AC中点,连接GF,求证:∠AFG+∠BEF=∠GFE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A,B,C在同一直线上,在这条直线同侧作等边△ABD和等边△BCE,连接AE和CD,交点为M,AE交BD于点P,CD交BE于点Q,连接PQ、BM, 有4个结论:①△ABE≌△DBC,②△DQB≌△ABP,③∠EAC=30°,④∠AMC=120°,请将所有正确结论的序号填在横线上______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】观察以下等式:
第1个等式:
+
+
×
=1,第2个等式:
+
+
×
=1,第3个等式:
+
+
×
=1,第4个等式:
+
+
×
=1,第5个等式:
+
+
×
=1,……
按照以上规律,解决下列问题:
(1)写出第6个等式:_____;
(2)写出你猜想的第n个等式:_____(用含n的等式表示),并证明.
相关试题