【题目】如图,一次函数y=kx+b的图象与反比例函数y=
的图象交于点A﹙﹣2,﹣5﹚,C﹙5,n﹚,交y轴于点B,交x轴于点D.
(1)求反比例函数y=
和一次函数y=kx+b的表达式;
(2)连接OA,OC.求△AOC的面积.
(3)当kx+b>
时,请写出自变量x的取值范围.
![]()
参考答案:
【答案】(1)y=x﹣3;(2)10.5;(3)﹣2<x<0或x>5.
【解析】
(1)由反比例函数y=
的图象经过点A﹙-2,-5﹚可得反比例函数的表达式y=
,
又点C﹙5,n﹚在反比例函数的图象上可得C的坐标为﹙5,2﹚,而一次函数的图象经过点A、C,将这两个点的坐标代入y=kx+b,可得所求一次函数的表达式为y=x-3;(2)把x=0代入一次函数y=x-3可得B点坐标为﹙0,-3﹚即OB=3又A点的横坐标为-2,C点的横坐标为5,根据S△AOC=S△AOB+S△BOC及三角形的面积公式即可求得△AOC的面积;(3)观察图象,直接可得结论.
(1)把A﹙﹣2,﹣5﹚代入y=
得:m=10,
即反比例函数的表达式为y=
,
把C﹙5,n﹚代入y=
得:n=2,
即C(5,2),
把A.C的坐标代入y=kx+b得:
,
解得:k=1,b=﹣3,
所以一次函数的表达式为y=x﹣3;
(2)把x=0代入y=x﹣3得:y=﹣3,即OB=3,
∵C(5,2),A﹙﹣2,﹣5﹚,
∴△AOC的面积为
×3×|﹣2|+
×3×5=10.5;
(3)由图象可知:当kx+b>
时,自变量x的取值范围是﹣2<x<0或x>5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:
类型 价格
进价(元/盏)
售价(元/盏)
A型
25
45
B型
40
70
(1)若商场进货款为3100元,则这两种台灯各购进多少盏?
(2)若商场在3200元的限额内购进这两种台灯,且A型台灯的进货数量不超过B型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是平行四边形,点E、F在BC上,且CF=BE,连接DE,过点F作FG⊥AB于点G.

(1)如图1,若∠B=60°,DE平分∠ADC,且
,
,求平行四边形ABCD的面积. (2)点H在GF上,且HE=HF,延长EH交AC,CD于点O,Q,连接AQ,若AC=BC=EQ,∠EQC=45°,求证:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知一次函数
的图象与x轴、y轴分别交于A、B两点,且与反比例函数
的图象在第一象限交于C点,CD垂直与x轴,垂足为D.若OA=OB=OD=1,
(1)求点A,B,D的坐标;
(2)求一次函数和反比例函数的解析式。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l1:y=kx+b与x轴、y轴分别交于A,B两点,其中点B的坐标为(0,6),∠BAO=30°将直线l1沿着y轴正方向平移一段距离得到直线l2交y轴于点M,且l1与l2之间的距离为3,点C(x,y)是直线11上的一个动点,过点C作AB的垂线CD交y轴于点D.

(1)求点M的坐标和直线l1的解析式;
(2)当C运动到什么位置时,△AOD的面积为21
,求出此时点C的坐标;(3)连接AM,将△ABM绕着点M旋转得到△A'B'M,在平面内是否存在一点N.使四边形AMA'N为矩形?若存在,求出点N的坐标:若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xoy中,一次函数y=kx+b(k≠0)的图象与反比例函数
(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n)。线段OA=5,E为x轴上一点,且
.(1)求该反比例函数和一次函数的解析式;
(2)求△AOC的面积;
(3)直接写出一次函数值大于反比例函数自变量x的取值范围。

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题:①所有锐角三角函数值都为正数;②解直角三角形时只需已知除直角外的两个元素;③Rt△ABC中,∠B=90°,则sin2A+cos2A=1;④Rt△ABC中,∠A=90°,则tanCsinC=cosC.其中正确的命题有( )
A. 0个 B. 1个 C. 2个 D. 3个
相关试题