【题目】下列命题:①所有锐角三角函数值都为正数;②解直角三角形时只需已知除直角外的两个元素;③Rt△ABC中,∠B=90°,则sin2A+cos2A=1;④Rt△ABC中,∠A=90°,则tanCsinC=cosC.其中正确的命题有( )
A. 0个 B. 1个 C. 2个 D. 3个
参考答案:
【答案】C
【解析】
根据锐角三角函数的定义判断所有的锐角三角函数值都是正数;根据锐角三角函数的概念结合勾股定理可以证明sin2A+cos2A=1,tanCsinC=cosC.
①根据锐角三角函数的定义知所有的锐角三角函数值都是正数,故正确;
②两个元素中,至少得有一条边,故错误;
③根据锐角三角函数的概念,以及勾股定理,得则
=
=1,故正确;
④根据锐角三角函数的概念,得tanC=
,sinC=
,cosC=
,则tanCcosC=sinC,故错误.
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b的图象与反比例函数y=
的图象交于点A﹙﹣2,﹣5﹚,C﹙5,n﹚,交y轴于点B,交x轴于点D.(1)求反比例函数y=
和一次函数y=kx+b的表达式;(2)连接OA,OC.求△AOC的面积.
(3)当kx+b>
时,请写出自变量x的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l1:y=kx+b与x轴、y轴分别交于A,B两点,其中点B的坐标为(0,6),∠BAO=30°将直线l1沿着y轴正方向平移一段距离得到直线l2交y轴于点M,且l1与l2之间的距离为3,点C(x,y)是直线11上的一个动点,过点C作AB的垂线CD交y轴于点D.

(1)求点M的坐标和直线l1的解析式;
(2)当C运动到什么位置时,△AOD的面积为21
,求出此时点C的坐标;(3)连接AM,将△ABM绕着点M旋转得到△A'B'M,在平面内是否存在一点N.使四边形AMA'N为矩形?若存在,求出点N的坐标:若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xoy中,一次函数y=kx+b(k≠0)的图象与反比例函数
(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n)。线段OA=5,E为x轴上一点,且
.(1)求该反比例函数和一次函数的解析式;
(2)求△AOC的面积;
(3)直接写出一次函数值大于反比例函数自变量x的取值范围。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长方形纸片ABCD中,AB=12厘米,折叠纸片,使得点A落在CD边上的点P处,折痕为MN,点M、N分别在边AD、AB上,当点P恰好是CD边的中点时,点N与点B重合,若在折叠过程中NP=NC,则PD=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一艘海轮位于灯塔P的北偏东方向55°,距离灯塔为2海里的点A处.如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长是( )

A. 2海里 B. 2sin 55°海里
C. 2cos 55°海里 D. 2tan 55°海里
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一块形如四边形ABCD的草地中,AB=3m,BC=4m,CD=12m,DA=13m,且∠ABC=90°,要以AC、CD、DA为边制作围栏,问围栏长多少米,草地面积多大?

相关试题