【题目】中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:![]()
(1)此次抽样调查中,共调查了 名学生.
(2)将图1、图2补充完整;
(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).
参考答案:
【答案】
(1)200.
解:100÷50%=200,
所以调查的总人数为200名;
故答案为200.
(2)
解:
B类人数=200×25%=50(名);D类人数=200﹣100﹣50﹣40=10(名);
C类所占百分比=
×100%=20%,D类所占百分比=
×100%=5%,
如图:
![]()
(3)
解:
画树状图为:
![]()
共有12种等可能的结果数,其中两名学生为同一类型的结果数为4,
所以这两名学生为同一类型的概率=
=
.
【解析】(1)用A类的人数除以该类所占的百分比即可得到总人数;
(2)分别计算出B、D两类人数和C、D两类所占百分比,然后补全统计图;
(3)先画树状图展示所有12种等可能的结果数,再找出两名学生为同一类型的结果数,然后根据概率公式求解.
-
科目: 来源: 题型:
查看答案和解析>>【题目】规定两数a、b之间的一种运算,记作(a,b):如果
,那么(a,b)=c.例如:因为
,所以(2,8)=3.(1)根据上述规定,填空:
(5,125)= ,(-2,4)= ,(-2,-8)= ;
(2)小明在研究这种运算时发现一个现象:
,他给出了如下的证明:设
,则
,即
∴
,即
,∴
.请你尝试运用上述这种方法说明下面这个等式成立的理由.
(4,5)+(4,6)=(4,30)
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,在正方形ABCD中,E、F分别是边BC、CD上的点,且∠EAF=45°,把△ADF绕着点A顺时针旋转90°得到△ABG,请直接写出图中所有的全等三角形;
(2)在四边形ABCD中,AB=AD,∠B=∠D=90°.
①如图2,若E、F分别是边BC、CD上的点,且2∠EAF=∠BAD,求证:EF=BE+DF;
②若E、F分别是边BC、CD延长线上的点,且2∠EAF=∠BAD,①中的结论是否仍然成立?请说明理由

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,
≈1.7,
≈1.4 ).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.

(1)求证:PB是的切线;
(2)若PB=6,DB=8,求⊙O的半径 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=﹣2x+4与坐标轴分别交于C、B两点,过点C作CD⊥x轴,点P是x轴下方直线CD上的一点,且△OCP与△OBC相似,求过点P的双曲线解析式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.
(1)求李老师步行的平均速度;
(2)请你判断李老师能否按时上班,并说明理由.
相关试题