【题目】已知抛物线y=ax2+b x+c经过A,B,C三点,当x≥0时,其图象如图所示.
![]()
(1)求抛物线的解析式,写出抛物线的顶点坐标;
(2)画出抛物线y=ax2+b x+c当x<0时的图象;
(3)利用抛物线y=ax2+b x+c,写出x为何值时,y>0.
参考答案:
【答案】(1)抛物线y =
顶点(
,
)(2)略(3) 当-1<x<4时, y >0
【解析】试题分析:本题的关键是求出抛物线的解析式,在题目给出的图象中可得出A、B、C三点的坐标,可用待定系数求出抛物线的解析式,进而可画出x<0时抛物线的图象,以及y>0时x的取值范围.
解:(1)由图象,可知A(0,2),B(4,0),C(5,﹣3),
得方程组
.
解得a=﹣
,b=
,c=2.
∴抛物线的解析式为y=﹣
x2+
x+2.
顶点坐标为(
,
).
(2)所画图如图.
(3)由图象可知,当﹣1<x<4时,y>0.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.

(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?
(2)若原点O在图中数轴上点C的右边,且CO=28,求p.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线过A(-1,0),B(3,0)两点,与y轴交于C点,且BC=3
,则这条抛物线的解析式为 ( )A. y=-x2+2x+3 B. y=x2-2x-3
C. y=x2+2x―3或y=-x2+2x+3 D. y=-x2+2x+3或y=x2-2x-3
-
科目: 来源: 题型:
查看答案和解析>>【题目】用配方法把二次函数y=l+2x-x2化为y=a(x-h)2+k的形式,作出它的草图,回答下列问题.
(1)求抛物线的顶点坐标和它与x轴的交点坐标;
(2)当x取何值时,y随x的增大而增大?
(3)当x取何值时,y的值大于0?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.
(1)求证:四边形OCED为菱形;
(2)连接AE、BE,AE与BE相等吗?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】―抛物线与x轴的交点是A(-2,0),B(1,0),且经过点C(2,8).
(1)求该抛物线的解析式;
(2)求该抛物线的顶点坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,矩形A′BC′O′是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕点B逆时针旋转得到的.点O′在x轴的正半轴上,点B的坐标为(1,3).

(1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O,O′两点,且图象顶点M的纵坐标为-l,求这个二次函数的解析式;
(2)在(1)中求出的二次函数图象对称轴的右侧,是否存在点P,使得△POM为直角三角形?若存在,求出点P的坐标和△POM的面积;若不存在,请说明理由;
(3)求边C′O′所在直线的解析式.
相关试题