【题目】如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s). ![]()
(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;
(2)填空: ①当t为s时,四边形ACFE是菱形;
②当t为s时,以A、F、C、E为顶点的四边形是直角梯形.
参考答案:
【答案】
(1)证明:∵AG∥BC,
∴∠EAD=∠DCF,∠AED=∠DFC,
∵D为AC的中点,
∴AD=CD,
∵在△ADE和△CDF中,
,
∴△ADE≌△CDF(AAS)
(2)6;1.5
【解析】(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6, 则此时的时间t=6÷1=6(s);
②四边形AFCE为直角梯形时,
(Ⅰ)若CE⊥AG,则AE=CF=
BC=3,BF=3×2=6,即点F与点C重合,不是直角梯形.
(Ⅱ)若AF⊥BC,
∵△ABC为等边三角形,
∴F为BC中点,即BF=3,
∴此时的时间为3÷2=1.5(s);
故答案为:6;1.5.
(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)①若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可;②分两种情况考虑:若CE⊥AG,此时四点构成三角形,不是直角梯形;若AF⊥BC,求出BF的长度及时间t的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,O是直线AB上一点,OC为任一条射线,OD平分∠AOC;OE平分∠BOC.
(1)图中∠BOD的邻补角为______;∠AOE的邻补角为______.
(2)如果∠COD=25°,那么∠COE=______;如果∠COD=60°,那么∠COE=______;
(3)试猜想∠COD与∠COE具有怎样的数量关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】右图为手的示意图,在各个手指间标记字母A、B、C、D.请你按图中箭头所指方向(即ABCDCBABC…的方式)从A开始数连续的正整数1,2,3,4…,当数到12时,对应的字母是 ;当字母C第201次出现时,恰好数到的数是 ;当字母C第2n+1次出现时(n为正整数),恰好数到的数是 (用含n的代数式表示).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠AOB是∠AOC的余角,∠AOD是∠AOC的补角,且∠BOD=2∠BOC,求∠BOD、∠AOC的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b-2)2=0

(1)求线段AB的长;
(2)如图1 点C在数轴上对应的数为x,且x是方程2x+1=
x-5的根,在数轴上是否存在点P使PA+PB=
BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(3)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM-
BN的值不变;②
PM+
BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值 -
科目: 来源: 题型:
查看答案和解析>>【题目】我国南水北调中线工程的起点是丹江水库,按照工程计划,需对原水库大坝进行混凝土加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位.如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡坡底端水平方向增加的宽度AC(结果精确到0.1米.参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,
).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=
(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.
(1)求k的值及点E的坐标;
(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.
相关试题