【题目】如图,在四边形ABCD中,AB=DC,E,F,G,H分别是AD,BC,BD,AC的中点.
![]()
(1)证明:EG=EH;(2)证明:四边形EHFG是菱形.
参考答案:
【答案】(1)见解析;(2)见解析.
【解析】
(1)利用EG是△ABD的中位线,EH是△ADC的中位线,则有EG=
AB,EH=
CD,又AB=CD,可证EG=EH,即可解题.
(2)首先运用三角形中位线定理可得到EG∥AB,HF∥AB,EH∥CD,FE∥DC,从而再根据平行于同一条直线的两直线平行得到GF∥EH,GE∥FH,可得到GFHE是平行四边形,再运用三角形中位线定理证明邻边相等,从而证明它是菱形.
解:证明:(1)∵四边形ABCD中,点F、E、G、H分别是BC、AD、BD、AC的中点,
∴EG是△ABD的中位线,EH是△ADC的中位线,
∴EG=
AB,EH=
CD,
∵AB=CD,
∴EG=EH;
(2)∵四边形ABCD中,点F、E、G、H分别是BC、AD、BD、AC的中点,
∴EG∥AB,HF∥AB,EH∥CD,FE∥DC,
∴GF∥EH,GE∥FH(平行于同一条直线的两直线平行);
∴四边形GFHE是平行四边形,
∵四边形ABCD中,点E、F、G、H分别是BC、AD、BD、AC的中点,
∴EG是△ABD的中位线,GF是△BCD的中位线,
∴GE=
AB,GF=
CD,
∵AB=CD,
∴GE=GF,
∴四边形EHFG是菱形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在数轴上点A表示数20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.
比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…

(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为___________;
(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC,求t的值;
②若点A向左运动,点C向右运动,2ABm×BC的值不随时间t的变化而改变,则2ABm×BC的值为_____________(直接写出答案).
-
科目: 来源: 题型:
查看答案和解析>>【题目】我区实施课堂教学改革后,学生的自主学习、合作交流能力有很大提高,为了解学生自主学习、合作交流的具体情况,张老师对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:

(1)本次调查中,张老师一共调查了_____名同学;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一男一女的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一列货车从北京开往乌鲁木齐,以58km/h的平均速度行驶需要65h.为了实施西部大开发,京乌线决定全线提速.
(1)如果提速后平均速度为vkm/h,全程运营时间为t小时,试写出t与v之间的函数表达式;
(2)如果提速后平均速度为78km/h,求提速后全程运营时间;
(3)如果全程运营的时间控制在40h内,那么提速后,平均速度至少应为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,AC,BD相交于点O,点E在BC上,AE交BD于F.

(1)若E是靠近点B的三等分点,求;①
的值;②△BEF与△DAF的面积比;(2)当
时,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.
甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)的关系如图所示.
乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,超过的部分每月每平方米加收4元.
(1)求如图所示的y与x的函数表达式;
(2)如果某学校目前的绿化面积是1200平方米.那么选择哪家公司的服务比较划算.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的有( )
①用两颗钉子就可以把木条固定在墙上
②把笔尖看成一个点,当这个点运动时便得到一条线;
③把弯曲的公路改直,就能缩短路程;
④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上。
A.
个B.
个C.
个D.
个
相关试题