【题目】在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的有( )
①用两颗钉子就可以把木条固定在墙上
②把笔尖看成一个点,当这个点运动时便得到一条线;
③把弯曲的公路改直,就能缩短路程;
④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上。
A.
个B.
个C.
个D.
个
参考答案:
【答案】B
【解析】
直接利用直线的性质以及两点确定一条直线的性质分析得出答案.
(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;
(2)把笔尖看成一个点,当这个点运动时便得到一条线,是根据点动成线;
(3)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.
(4)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AB=DC,E,F,G,H分别是AD,BC,BD,AC的中点.

(1)证明:EG=EH;(2)证明:四边形EHFG是菱形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,AC,BD相交于点O,点E在BC上,AE交BD于F.

(1)若E是靠近点B的三等分点,求;①
的值;②△BEF与△DAF的面积比;(2)当
时,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.
甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)的关系如图所示.
乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,超过的部分每月每平方米加收4元.
(1)求如图所示的y与x的函数表达式;
(2)如果某学校目前的绿化面积是1200平方米.那么选择哪家公司的服务比较划算.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知反比例函数
的图象经过点A(﹣1,a),过点A作AB⊥x轴,垂足为点B,△AOB的面积为
.
(1)求k的值;
(2)若一次函数y=mx+n图象经过点A和反比例函数图象上另一点
,且与x轴交于M点,求AM的值;(3)在(2)的条件下,如果以线段AM为一边作等边△AMN,顶点N在另一个反比例函数
上,则k'= . -
科目: 来源: 题型:
查看答案和解析>>【题目】【探索发现】
如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 .

【拓展应用】
如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为 .(用含a,h的代数式表示)
【灵活应用】
如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.
【实际应用】
如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=
,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元。厂方在开展促销活动期间,向客户提供两种优惠方案:
①买一套西装送一条领带;②西装和领带都按定价的90%付款。现某客户要到该服装厂购买西装20套,领带x条(
):(1)若该客户按方案①购买,需付款______________元(用含x的代数式表示);若该客户按方案②购买,需付款________________元(用含x的代数式表示);
(2)若x=30,通过计算说明此时按哪种方案购买较为合算?
(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法。
相关试题