【题目】在一个不透明的袋子中装有除颜色外都相同的红球和黄球,两种颜色的球一共有10个,每次摸出其中一个球,记下颜色后,放回搅匀.一个同学进行了反复试验,下面是做该试验获得的数据.
![]()
(1)a= ,画出摸到红球的频率的折线统计图;
(2)从这个袋子中任意摸一个球,摸到黄球的概率估计值是多少?(精确到0.1)
(3)怎样改变袋中红球或黄球的个数,可以使得任意摸一次,摸到两种颜色球的概率相等?(写出一种方案即可)
参考答案:
【答案】(1)
;(2)约为0.7;(3)添加4个红球或拿掉4个黄球(答案不唯一)
【解析】
(1)根据题意只要用348除以1200即得a的值,进而可画出摸到红球的频率的折线统计图;
(2)由表格数据可得摸到红球概率的估计值,进而可得摸到黄球的概率估计值;
(3)先由前面确定袋子中红球和黄球的个数,再设添加x个红球或拿走y个黄球,根据题意列出方程,解方程即可得出结论.
解:(1)348÷1200=0.29,即
;
摸到红球的频率的折线统计图如图所示:
![]()
(2)由题意得:摸到红球概率的估计值为0.3,所以摸到黄球的概率估计值=1-0.3=0.7;
(3)由于袋子中有红球3个,黄球7个,可设添加x个红球,则
,解得:x=4;
或设拿走y个黄球,则
,解得:y=4.
所以添加4个红球或拿掉4个黄球(答案不唯一),可以使得任意摸一次,摸到两种颜色球的概率相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知O为直线AD上一点,∠AOC与∠AOB互补,OM和ON分别是∠AOC和∠AOB的平分线.
(1) 试说明:∠AOB=∠COD;
(2) 若∠COD=36°,求∠MON的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择,某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论,为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.

根据图中信息,解答下列问题:
(1)求本次调查的学生总人数,并通过计算补全条形统计图;
(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;
(3)该校共有学生1800人,请你估计该校对在线阅读最感兴趣的学生人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
、
满足:
.(1)求
、
的值;(2)已知线段AB=
,点P在直线AB上,且
=
,点Q为PB的中点,求线段AQ的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知一个函数y与自变量x的部分对应值如下表:

(1)从我们已学过的函数判断:y是x的 函数,y与x的函数关系式为 ;
(2)根据函数图像,当-2 x -
时,求y的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰△ABC中,点D、E分别是边AB、AC上的两点(点D不与点A、 点B重合),且DE∥BC,以DE为一边,在四边形DBCE的内部作正方形DEFG,已知AB=AC=5,BC=6.
(1)试求△ABC的面积;
(2)当GF与BC重合时,求正方形DEFG的边长;
(3)若BG的长度等于正方形DEFG的边长,试求AD的长.


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=4,BC=3,点P、Q分别从A、B两点出发,按逆时针方向沿矩形的边运动,点P的速度是每秒2个单位长度,点Q的速度是每秒1个单位长度,运动的时间为t秒,当其中某一点到达点A时,运动停止,运动过程中,点P关于直线AQ的对称点记为点M.
(1)点P点在线段AB上运动,点Q在线段BC上运动时,请用含t的式子表示出△APQ的面积S;
(2)当点P在线段BC上运动,且△ABP∽△PCQ时,求t的值;
(3)若点Q在线段CD上,且以A、P、Q、M为顶点的四边形是菱形,求t的值.

相关试题