【题目】如图,已知
是⊙
的直径,
是⊙
上一点,∠
的平分线交⊙
于点
,交⊙
的切线
于点
,过点
作
⊥
,交
的延长线于点
.![]()
(1)求证:
是⊙
的切线;
(2)若
.求
值.
参考答案:
【答案】
(1)证明:如图,连结OD,
![]()
∵AD平分∠BAC,
∴∠DAF=∠DAO,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠DAF=∠ODA,
∴AF∥OD,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切线,
(2)解:①连接BD,
![]()
∵直径AB,∴∠ADB=90°,∵圆O与BE相切,∴∠ABE=90°,∵∠DAB+∠DBA=∠DBA+∠DBE=90°,∴∠DAB=∠DBE,∴∠DBE=∠FAD,∵∠BDE=∠AFD=90°,∴△BDE∽△AFD,∴ ![]()
②连接OC,交AD于G,
![]()
由①,设BE=2x,则AD=3x,
∵△BDE∽△ABE,
∴
,
∴
,
解得:x1=2,x2=-
(不合题意,舍去),
∴AD=3x=6,BE=2x=4,AE=AD+DE=8,
∴sin∠EAB=
,
∴∠EAB=30°,
∴∠FAB=60°
【解析】(1)由AD平分∠BAC和OA=OD,得到∠DAF=∠ODA,根据内错角相等两直线平行,得到AF∥OD,由DF⊥AC,得到DF是⊙O的切线;(2)由直径AB,得到∠ADB=90°,由BE是圆O的切线和同角的余角相等,得到∠DAB=∠DBE,∠DBE=∠FAD,根据两角对应相等两三角形相似,得到△BDE∽△AFD,得到比例,求出比值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的布口袋里装有白、红、黑三种颜色的小球,它们除了颜色之外没有其它区别,其中白球2只、红球1只、黑球1只. 袋中的球已经搅匀.
(1)随机地从袋中摸出1只球,则摸出白球的概率是多少?
(2)随机地从袋中摸出1只球,放回搅匀再摸出第二个球.请你用画树状图或列表的方法表示所有等可能的结果,并求两次都摸出白球的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )

A.94B.85C.84D.76
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.

(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物
是否需要挪走,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,则∠AEB的度数为__________.
(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列解方程组的部分过程,回答下列问题
解方程组

现有两位同学的解法如下:
解法一;由①,得x=2y+5,③
把③代入②,得3(2y+5)﹣2y=3.……
解法二:①﹣②,得﹣2x=2.……
(1)解法一使用的具体方法是________,解法二使用的具体方法是______,以上两种方法的共同点是________.
(2)请你任选一种解法,把完整的解题过程写出来
相关试题