【题目】如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.
![]()
(1)AM= ,AP= .(用含t的代数式表示)
(2)当四边形ANCP为平行四边形时,求t的值
(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,
①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由
②使四边形AQMK为正方形,则AC= .
参考答案:
【答案】(1)8﹣2t;2+t;(2)2;(3)①存在时刻t=1,使四边形AQMK为菱形.理由详见解析;②8
.
【解析】试题分析:(1)由DM=2t,根据AM=AD-DM即可求出AM=6-2t;先证明四边形CNPD为矩形,得出DP=CN=4-t,则AP=AD-DP=2+t;
(2)根据四边形ANCP为平行四边形时,可得4-t=6-(6=4-t),解方程即可;
(3))①由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程4-t-2t=6-(4-t),求解即可,
②要使四边形AQMK为正方形,由∠ADC=90°,可得∠CAD=45°,所以四边形AQMK为正方形,则CD=AD,由AD=8,可得CD=6,利用勾股定理求得AC即可.
试题解析:(1)6﹣2t,2+t.
(2)∵四边形ANCP为平行四边形时,CN=AP,
∴4﹣t=t+2,解得t=1,
(3)①∵NP⊥AD,QP=PK,
∴当PM=PA时有四边形AQMK为菱形,
∴4﹣t﹣2t=2+t,解得t=0.5,
∴存在时刻t=0.5,使四边形AQMK为菱形.
②AC=6
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=ax2﹣2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(﹣1,0),O是坐标原点,且|OC|=3|OA|

(1)求抛物线的函数表达式;
(2)直接写出直线BC的函数表达式;
(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).
求:①s与t之间的函数关系式;
②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:
)依先后次序记录如下:
,
,
,
,
,
,
,
,
,
.
将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?
出租车在行驶过程中,离鼓楼最远的距离是多少?
出租车按物价部门规定,起步价(不超过
千米)为
元,超过
千米的部分每千米的价格为
元,司机一个下午的营业额是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】先观察表格,再解决问题.
项数
第一项
前两项
前三项
前四项
前五项
式子①





式子②





两个式子的比





________(直接写出结果);
计算
的值;
计算
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为( )

A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】数轴上
,
两点对应的数分别为
,
,且满足
;
求
,
的值;
若点
以每秒
个单位,点
以每秒
个单位的速度同时出发向右运动,多长时间后
,
两点相距
个单位长度?
已知
从
向右出发,速度为每秒一个单位长度,同时
从
向右出发,速度为每秒
个单位长度,设
的中点为
,
的值是否变化?若不变求其值;否则说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】将下列各数填入相应的集合中:
—7 , 0,
, —2.55555……, 3.01, +9 , 4.020020002…, +10﹪, 
有理数集合:{ };
无理数集合:{ };
整数集合:{ };
分数集合:{ }
相关试题