【题目】如图,在△ABC中,∠B=60°,∠C=20°,AD为△ABC的高,AE为角平分线.求∠EAD的度数.
![]()
参考答案:
【答案】20°.
【解析】
试题此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.此题还考查了三角形的外角的性质和应用,要熟练掌握,解答此题的关键是要明确:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.首先根据三角形的内角和定理,求出∠BAC的度数是多少;然后根据AE为角平分线,求出∠BAE的度数是多少;最后在Rt△ABD中,求出∠BAD的度数,即可求出∠EAD的度数是多少.
试题解析:∵∠B=60°,∠C=20°, ∴∠BAC=180°﹣60°﹣20°=100°,
∵AE为角平分线, ∴∠BAE=100°÷2=50°, ∵AD为△ABC的高, ∴∠ADB=90°,
∴∠BAD=90°﹣60°=30°, ∴∠EAD=∠BAE﹣∠BAD=50°﹣30°=20°,
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于二次函数y=﹣2x2+1,下列说法错误的是( )
A.图象开口向下
B.图象的对称轴为x=
C.函数最大值为1
D.当x>1时,y随x的增大而减小 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,∠CAB=70°,将△ABC绕点A按逆时针方向旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠ACB=60°,半径为1cm的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离是cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A、B的坐标分别为(0,2),(1,0),直线y=
﹣3与坐标轴交于C、D两点.(1)求直线AB:y=kx+b与CD交点E的坐标;
(2)直接写出不等式kx+b>
﹣3的解集;(3)求四边形OBEC的面积;

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(2,3),B(1,1),C(4,1),M(6,3).

(1)将△ABC平原得到△A1B1C1 , 其中点A,B,C的对应点分别是A1 , B1 , C1 , 且点A1的坐标是(3,6),在图中画出△A1B1C1 .
(2)将(1)中的△A1B1C1绕点M顺时针旋转90°,画出旋转后的△A2B2C2(其中点A2 , B2 , C2的对应点分别是A1 , B1 , C1),并写出点A2 , B2 , C2的坐标.
(3)(2)中的△A2B2C2能通过旋转△ABC得到吗?若能,请写出旋转的方案. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E. 求证:AB=BE.

相关试题