【题目】如图,抛物线y=x2+bx+c与x轴相交于A、B两点,点B的坐标为(3,0),与y轴相交于点C(0,﹣3),顶点为D.![]()
(1)求出抛物线y=x2+bx+c的表达式;
(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.
①当m为何值时,四边形PEDF为平行四边形.
②设四边形OBFC的面积为S,求S的最大值.
参考答案:
【答案】
(1)
解:∵抛物线过B、C两点,
∴
,解得
,
∴抛物线表达式为y=x2﹣2x﹣3
(2)
解:①∵B(3,0),C(0,﹣3),
∴直线BC解析式为y=x﹣3,
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴D(1,﹣4),
∴E(1,﹣2),
∴DE=﹣2﹣(﹣4)=2,
∵PF∥DE,且P(m,m﹣3),
∴F(m,m2﹣2m﹣3),
∵点P为线段BC上的一个动点,
∴PF=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,
当四边形PEDF为平行四边形时,则有PF=DE=2,
即﹣m2+3m=2,解得m=1(舍去)或m=2,
∴当m的值为2时,四边形PEDF为平行四边形;②由①可知PF=﹣m2+3m,
∴S△FBC=
PFOB=
×3(﹣m2+3m)=﹣
(m﹣
)2+
,
∵S△OBC=
OBOC=
×3×3=
,
∴S=S△FBC+S△OBC=﹣
(m﹣
)2+
+
=﹣
(m﹣
)2+
,
∵﹣
<0,
∴当m=
时,S有最大值 ![]()
【解析】(1)由B、C两点的坐标,利用待定系数法可求得抛物线的表达式;(2)①可求得直线BC的解析式,则可表示出P、F的坐标,从而可表示出PF和DE的长,由平行四边形的性质可知PF=DE,则可得到关于m的方程,可求得m的值;②用m可表示出PF的长,则可表示出△BCF的面积,从而可表示出四边形OBFC的面积,利用二次函数的性质可求得其最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.
(1)如图1,
求证:DECD=DFBE
(2)D为BC中点如图2,
连接EF.
①求证:ED平分∠BEF;
②若四边形AEDF为菱形,求∠BAC的度数及
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).
(1)按下列要求画图:
①标出格点D,使CD∥AB,并画出线段CD;
②标出格点E,使CE⊥AB,并画出线段CE.
(2)CD与CE的关系是 .
(3)计算△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是⊙O内接正三角形,将△ABC绕点O顺时针旋转30°得到△DEF,DE分别交AB,AC于点M,N,DF交AC于点Q,则有以下结论:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周长等于AC的长;④NQ=QC.其中正确的结论是 ①②③ .(把所有正确的结论的序号都填上)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S四边形DGOF=2:7.其中正确结论的个数是( )

A.4个
B.3个
C.2个
D.1个 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线 AB,CD 相交于点O,OE 平分∠AOD,OF⊥OC.
(1)图中∠AOF 的余角是_____ _____(把符合条件的角都填出来);
(2)如果∠AOC=120°,那么根据____ ______,可得∠BOD=__________°;
(3)如果∠1=32°,求∠2和∠3的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与日销售量y(件)之间的关系如下表.
x(元∕件)
15
18
20
22
…
y(件)
250
220
200
180
…
按照这样的规律可得,日销售利润w(元)与销售单价x(元/件)之间的函数关系式是 .
相关试题