【题目】如图,在Rt△ABC中,∠C=90°,BC=2
,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为_____.
![]()
参考答案:
【答案】3或![]()
【解析】
由∠C=90°,BC=2
,AC=2可得tanB=
,即∠B=30°,再根据直角三角形的性质可得AB=2AC=4;再由翻折的性质可得DB=DC=
,EB′=EB,∠DB′E=∠B=30°;设AE=x,则BE=4﹣x,EB′=4﹣x.当∠AFB′=90°时,解直角三角形可得EF=x﹣
;又由在Rt△B′EF中,∠EB′F=30°,可得EB′=2EF;再用x表示出来,然后解关于x的方程即可;②当∠AB′F=90°时,即B′不落在C点处时,在进行求解即可.
解:∵∠C=90°,BC=2
,AC=2,
∴tanB=
,
∴∠B=30°,
∴AB=2AC=4,
∵点D是BC的中点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F
∴DB=DC=
,EB′=EB,∠DB′E=∠B=30°,
设AE=x,则BE=4﹣x,EB′=4﹣x,
当∠AFB′=90°时,
在Rt△BDF中,cosB=
,
∴BF=
cos30°=
,
∴EF=
﹣(4﹣x)=x﹣
,
在Rt△B′EF中,∵∠EB′F=30°,
∴EB′=2EF,
即4﹣x=2(x﹣
),解得x=3,此时AE为3;
②当∠AB′F=90°时,即B′不落在C点处时,作EH⊥AB′于H,连接AD,如图,
∵DC=DB′,AD=AD,
∴Rt△ADB′≌Rt△ADC,
∴AB′=AC=2,
∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,
∴∠EB′H=60°,
在Rt△EHB′中,B′H=
B′E=
(4﹣x),EH=
B′H=
(4﹣x),
在Rt△AEH中,
∵EH2+AH2=AE2,
∴
(4﹣x)2+[
(4﹣x)+2]2=x2,解得x=
,此时AE为
.
综上所述,AE的长为3或
.
故答案为3或
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(8,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).

(1)求A、B两点的坐标;
(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤12),求S与t的函数表达式;
(3)在(2)的条件下,t为何值时,S最大?并求出S的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是边长为4的等边三角形,点D是AB上异于A,B的一动点,将△ACD绕点C逆时针旋转60°得△BCE,则旋转过程中△BDE周长的最小值_____

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D,若BC=6,sin∠BAC=
,则AC=_____,CD=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“树德之声”结束后,王老师和李老师整理了所有参赛选手的比赛成绩(单位:分),绘制成如图频数直方图和扇形统计图:

(1)求本次比赛参赛选手总人数,并补全频数直方图;
(2)求扇形统计图中扇形D的圆心角度数;
(3)成绩在D区域的选手中,男生比女生多一人,从中随机抽取两人,求恰好选中一名男生和一名女生的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是小花在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA1表示小花身高1.5米,当她从点A跑动9
米到达点B处时,风筝线与水平线构成45°角,此时风筝到达点E处,风筝的水平移动距离CF=10
米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=
交于A、C两点,AB⊥OA交x轴于点B,且AB=OA.(1)求双曲线的解析式;
(2)连接OC,求△AOC的面积.

相关试题