【题目】如图已知P为⊙O外一点,PA为⊙O的切线,B为⊙O上一点,且PA=PB,C为优弧
上任意一点(不与A、B重合),连接OP、AB,AB与OP相交于点D,连接AC、BC.![]()
(1)求证:PB为⊙O的切线;
(2)若tan∠BCA=
,⊙O的半径为
,求弦AB的长.
参考答案:
【答案】
(1)
证明:连接OA,OB,如图所示:
![]()
∵AP为圆O的切线,
∴∠OAP=90°,
在△OAP和△OBP中,
,
∴△OAP≌△OBP(SSS),
∴∠OAP=∠OBP=90°,
则BP为圆O的切线;
(2)
解:延长线段BO,与圆O交于E点,连接AE,
∵BE为圆O的直径,∴∠BAE=90°,
∵∠AEB和∠ACB都对
,
∴∠AEB=∠ACB,
∴tan∠AEB=tan∠ACB=
,
设AB=2x,则AE=3x,
在Rt△AEB中,BE=2
,
根据勾股定理得:(2x)2+(3x)2=(2
)2,
解得:x=2或x=﹣2(舍去),
则AB=2x=4.
【解析】(1)连接OA,OB,根据AP为圆O的切线,利用切线的性质得到∠OAP为直角,由半径OA=OB,已知AP=BP,以及公共边OP,利用SSS得出△OAP≌△OBP,利用全等三角形的对应角相等得到∠OBP为直角,即BP垂直于OB,可得出BP为圆O的切线;(2)延长BO与圆交于点E,连接AE,利用同弧所对的圆周角相等得到∠AEB=∠ACB,可得出tan∠AEB的值,由BE为圆O的直径,利用直径所对的圆周角为直角,得到∠BAE为直角,在直角三角形AEB中,设AB=2x,得到AE=3x,再由直径BE的长,利用勾股定理得到关于x的方程,求出方程的解得到x的值,即可求出弦AB的长.
【考点精析】掌握垂径定理和解直角三角形是解答本题的根本,需要知道垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法).
-
科目: 来源: 题型:
查看答案和解析>>【题目】小丽一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶ah后,途中在加油站加油若干bL.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示.根据图象回答下列问题:
①小汽车行驶________h后加油, 中途加油__________L;
②求加油前油箱余油量Q与行驶时间t的函数关系式;
③如果加油站距景点200km,车速为80km/h,要到达目的
地,油箱中的油是否够用?请说明理由。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=8,BC=4,过对角线BD的中点O的直线分别交AB、CD于点E、F,连接DE,BF.
(1)求证:四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,求EF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(8分)体育课上,某中学对七年级男生进行了引体向上测试,以能做7个为标准多于标准的次
数记为正数,不足的次数记为负数,其中8名男生的成绩为+2,-1,+3,0,-2,-3,+1,0.
(1)这8名男生中达到标准的占百分之几?
(2)他们共做了多少次引体向上?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为支持抗震救灾,我市A、B两地分别有赈灾物资100吨和180吨,需全部运往重灾区C、D两县,根据灾区的情况,这批赈灾物资运往C县的数量比运往D县的数量的2倍少80吨.
(1)求这批赈灾物资运往C、D两县的数量各是多少吨?
(2)设A地运往C县的赈灾物资数量为x吨(x为整数).若要B地运往C县的赈灾物资数量大于A地运往D县赈灾物资数量的2倍,且要求B地运往D县的赈灾物资数量不超过63吨,则A、B两地的赈灾物资运往C、D两县的方案有几种? -
科目: 来源: 题型:
查看答案和解析>>【题目】邮递员骑摩托车从邮局出发,先向西骑行2千米到达A村,继续向西骑行3千米到达B村,然后向东骑行9千米到达C村,最后回到邮局.
(1)C村离A村多远?
(2)若摩托车每10千米需1.5升汽油,邮递员最后回到邮局时,一共用了多少升汽油?
-
科目: 来源: 题型:
查看答案和解析>>【题目】一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东24.5°方向,轮船向正东航行了2400m,到达Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.

(1)线段BQ与PQ是否相等?请说明理由;
(2)求A、B间的距离(参考数据cos41°=0.75).
相关试题