【题目】观察下表: 我们把某格中字母和所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:
序号 | 1 | 2 | 3 | … |
图形 | x x | x x x | x x x x | … |
(1)第3格的“特征多项式”为 , 第4格的“特征多项式”为 , 第n格的“特征多项式”为;
(2)若第1格的“特征多项式”的值为﹣10,第2格的“特征多项式”的值为﹣16. ①求x,y的值;
②在①的条件下,第n格的“特征多项式”是否有最小值?若有,求出最小值和相应的n值;若没有,请说明理由.
参考答案:
【答案】
(1)16x+9y;25x+16y;(n+1)2x+n2y
(2)解:①∵第1格的“特征多项式”的值为﹣8,第2格的“特征多项式”的值为﹣11,
∴根据题意可得:
,
解得:
;
②有最小值,
将x=﹣
,y=
代入(n+1)2x+n2y=(﹣
)(n+1)2+
n2=
(n﹣12)2﹣
,
当n=12时,最小值为﹣ ![]()
【解析】解:(1)第3格的“特征多项式”为:16x+9y;第4格的“特征多项式”为:25x+16y; 第n格的“特征多项式”为:(n+1)2x+n2y;
故答案为:16x+9y;25x+16y;(n+1)2x+n2y;
(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形一腰上的高与另一腰的夹角为360,则该等腰三角形的底角的度数为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D.
(1)若BC=10,BD=6,则点D到AB的距离是多少?
(2)若∠BAD=30°,求∠B的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB,AC的垂直平分线分别交BC于D,E两点,垂足分别是M,N.
(1)若△ADE的周长是10,求BC的长;
(2)若∠BAC=100°,求∠DAE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是

A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
-
科目: 来源: 题型:
查看答案和解析>>【题目】我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中既是轴对称图形又是中心对称图形的个数有( )

A.4个
B.3个
C.2个
D.1个 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.
(1)试求∠DAE的度数;

(2)如果把原题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?为什么?
相关试题