【题目】如图,△ABC中,AB,AC的垂直平分线分别交BC于D,E两点,垂足分别是M,N.
(1)若△ADE的周长是10,求BC的长;
(2)若∠BAC=100°,求∠DAE的度数.
![]()
参考答案:
【答案】(1)BC=10.(2)20°.
【解析】
(1)由AB、AC的垂直平分线分别交BC于D、E,垂足分别是M、N,根据线段垂直平分线的性质,可得AD=BD,AE=EC,继而可得△ADE的周长等于BC的长;
(2)由∠BAC=100゜,可求得∠B+∠C的度数,又由AD=BD,AE=EC,即可求得∠BAD+∠CAE的度数,继而求得答案.
解:(1)因为AB,AC的垂直平分线分别交BC于D,E两点,垂足分别是M,N,
所以AD=BD,AE=CE.
因为△ADE的周长是10,
所以AD+DE+AE=BD+DE+CE=BC=10,即BC=10.
(2)因为∠BAC=100°,
所以∠B+∠C=180°-∠BAC=80°.
因为AD=BD,AE=CE,
所以∠BAD=∠B,∠CAE=∠C,
所以∠BAD+∠CAE=80°,所以∠DAE=∠BAC-(∠BAD+∠CAE)=100°-80°=20°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在□ABCD 中,点P在对角线AC上,过P作EF∥AB,HG∥AD,记四边形BFPH的面积为S1,四边形DEPG的面积为S2,则S1与S2的大小关系是( )

A. S1>S2 B. S1=S2 C. S1<S2 D. 无法判断
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形一腰上的高与另一腰的夹角为360,则该等腰三角形的底角的度数为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D.
(1)若BC=10,BD=6,则点D到AB的距离是多少?
(2)若∠BAD=30°,求∠B的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下表: 我们把某格中字母和所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:
序号
1
2
3
…
图形
x x
y
x xx x x
y y
x x x
y y
x x xx x x x
y y y
x x x x
y y y
x x x x
y y y
x x x x…
(1)第3格的“特征多项式”为 , 第4格的“特征多项式”为 , 第n格的“特征多项式”为;
(2)若第1格的“特征多项式”的值为﹣10,第2格的“特征多项式”的值为﹣16. ①求x,y的值;
②在①的条件下,第n格的“特征多项式”是否有最小值?若有,求出最小值和相应的n值;若没有,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是

A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
-
科目: 来源: 题型:
查看答案和解析>>【题目】我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中既是轴对称图形又是中心对称图形的个数有( )

A.4个
B.3个
C.2个
D.1个
相关试题