【题目】(探索新知)
如图1,点C在线段AB上,图中共有3条线段:AB、AC和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.
(1)一条线段的中点 这条线段的“二倍点”;(填“是”或“不是”)
(深入研究)
如图2,若线段AB=20cm,点M从点B的位置开始,以每秒2cm的速度向点A运动,当点M到达点A时停止运动,运动的时间为t秒.
(2)问t为何值时,点M是线段AB的“二倍点”;
(3)同时点N从点A的位置开始,以每秒1cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.
![]()
参考答案:
【答案】(1)是;(2)t为
或5或
时;(3)t为7.5或8或
时
【解析】
(1)可直接根据“二倍点”的定义进行判断即可;
(2)用含t的代数式分别表示出线段AM、BM、AB,然后根据“二倍点”的意义,分类讨论即可得结果;
(3)用含t的代数式分别表示出线段AN、NM、AM,然后根据“二倍点”的意义,分类讨论即可.
(1)因为线段的中点把该线段分成相等的两部分,
该线段等于2倍的中点一侧的线段长,
所以一条线段的中点是这条线段的“二倍点”,
故答案为:是;
(2)当AM=2BM时,20﹣2t=2×2t,解得:t=
;
当AB=2AM时,20=2×(20﹣2t),解得:t=5;
当BM=2AM时,2t=2×(20﹣2t),解得:t=
;
答:t为
或5或
时,点M是线段AB的“二倍点”;
(3)当AN=2MN时,t=2[t﹣(20﹣2t)],解得:t=8;
当AM=2NM时,20﹣2t=2[t﹣(20﹣2t)],解得:t=7.5;
当MN=2AM时,t﹣(20﹣2t)=2(20﹣2t),解得:t=
;
答:t为7.5或8或
时,点M是线段AN的“二倍点”.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在每个小正方形的边长为
的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距
的另一个格点的运动称为一次跳马变换.例如,在
的正方形网格图形中(如图1),从点
经过一次跳马变换可以到达点
,
,
,
等处.现有
的正方形网格图形(如图2),则从该正方形的顶点
经过跳马变换到达与其相对的顶点
,最少需要跳马变换的次数是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O是直线AB上一点,OD平分∠BOC,∠COE=90°.
(1)若∠AOC=48°,求∠DOE的度数.
(2)若∠AOC=α,则∠DOE= (用含α的代数式表示).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC.
(1)求证:AE是∠DAB的平分线;
(2)探究:线段AD、AB、CD之间有何数量关系?请证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:(1)25×26=________;
(2)
×
=________;(3)-a2·a5=________;
(4)x2·x2m-2=________;
(5)(-b)2·(-b)3·(-b)5=________;
(6)x·x4+x5=________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程:
(1)3(20-y)=6y-4(y-11);
(2)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC为等边三角形,点D由点C出发,在BC的延长线上运动,连结AD,以AD为边作等边三角形ADE,连结CE.
(1)请写出AC、CD、CE之间的数量关系,并证明;
(2)若AB=6cm,点D的运动速度为每秒2cm,运动时间为t秒,则t为何值时,CE⊥AD?

相关试题