【题目】已知:正方形ABCD的边长为
厘米,对角线AC上的两个动点E,F,点E从点A、点F从点C同时出发,沿对角线以1厘米/秒的相同速度运动,过E作EH⊥AC交Rt△ACD的直角边于H;过F作FG⊥AC交Rt△ACD的直角边于G,连接HG,EB.设HE,EF,FG,GH围成的图形面积为
,AE,EB,BA围成的图形面积为
(这里规定:线段的面积为
).E到达C,F到达A停止.若E的运动时间为x秒,解答下列问题:
(1)如图①,判断四边形EFGH是什么四边形,并证明;
(2)当0<x<8时,求x为何值时,
;
(3)若
是
的和,试用x的代数式表示y.(图②为备用图)
![]()
![]()
参考答案:
【答案】(1)四边形EFGH是矩形,证明见解析;(2)6;(3)![]()
【解析】(1)、首先根据动点E、F的运动速度与运动时间均相同得出AE=CF,再由正方形的性质及已知EH⊥AC,FG⊥AC得出△CGF与△AHE都是等腰直角三角形,然后根据有一个角是直角的平行四边形是矩形得出结论;(2)、首先由勾股定理求出正方形ABCD的对角线长为16.再连接BD交AC于O,则BO=8.然后用含x的代数式分别表示S1,S2,当S1=S2时得出关于x的方程,解方程即可;(3)、因为当x=8时,点E与点F重合,此时S1=0,y=S2.故应分0≤x<8与8≤x≤16两种情况讨论.
(1)、四边形EFGH是矩形,
证明:∵E、F运动时间相同,∴AE=CF,∵
⊥
,
⊥
,∴EH//FG ,
∵ABCD为正方形,∴AD=DC,∠D=900,∴∠GCF=∠HAE=450,
又
⊥
,
⊥
,∴∠CGF=∠AHE=450,∴∠GCF=∠CGF,∠HAE=∠AHE
∴AE=EH,CF=FG,∴EH=FG ,∴四边形EFGH是平行四边形,
∵
⊥
,∴四边形EFGH是矩形.
(2)、
正方形边长为
,
.
,过
作
于
,则
.
,
,
,
.
当
时,
.解得
(舍去),
.
当
时,
.
![]()
(3)、①当
时,
.
②当
时,
,
,
.
.
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算题
(1)﹣10﹣(﹣16)+(﹣24);
(2)﹣3.5÷
×(﹣
)×|﹣
|(3)(
﹣
+
)×(﹣36)(4)(﹣1)3+[42﹣(l﹣32)×2]
-
科目: 来源: 题型:
查看答案和解析>>【题目】
两地盛产柑桔,
地有柑桔200吨,
地有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知
仓库可储存240吨,
仓库可储存260吨;从
地运往C、D两处的费用分别为每吨20元和25元,从
地运往C、D两处的费用分别为每吨15元和18元.设从
地运往
仓库的柑桔重量为x吨,A、B两地运往两仓库的柑桔运输费用分别为yA元和yB元.(1)请填写下表后分别求出yA,yB之间的函数关系式,并写出定义域;

C
D
总计
A
x吨
200吨
B
300吨
总计
240吨
260吨
500吨
(2)试讨论A,B两地中,哪个运费较少;
-
科目: 来源: 题型:
查看答案和解析>>【题目】“国庆节大酬宾”,某商场设计的促销活动如下:在一个不透明的箱子里放有3个质地相同的小球,并在球上分别标有“5元”、“10元”和“15元”的字样,规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两个小球所标金额和返还相等价格的购物券,购物券可以在本商场消费,某顾客刚好消费300元.
(1)该顾客最多可得到元购物券;
(2)请你用画树状图和列表的方法,求出该顾客所得购物券的金额不低于25元的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】张明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.
(1)共有 种弥补方法;
(2)任意画出一种成功的设计图(在图中补充);
(3)在你帮忙设计成功的图中,要把﹣8,10,﹣12,8,﹣10,12这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0.(直接在图中填上)

-
科目: 来源: 题型:
查看答案和解析>>【题目】请根据图示的对话解答下列问题.

求:(1)a,b的值;
(2)8﹣a+b﹣c的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b满足关系式a=
+2.若在第二象限内有一点P(m,1),使四边形ABOP的面积与三角形ABC的面积相等,则点P的坐标为( )
A. (-3,1) B. (-2,1) C. (-4,1) D. (-2.5,1)
相关试题