【题目】在
中,对角线
交于点
,将过点
的直线
绕点
旋转,交射线
于点
,
于点
,
于点
,连接
.
如图
当点
与点
重合时,请直接写出线段
的数量关系;
如图
,当点
在线段
上时,
与
有什么数量关系?请说明你的结论;
如图
,当点
在线段
的延长线上时,
与
有什么数量关系?请说明你的结论.
![]()
参考答案:
【答案】(1)
;(2)
,详见解析;(3)
,详见解析.
【解析】
(1)利用平行四边形的性质通过“角角边”证明△CFB≌△AGD,得到CF=AG,即可得证
;
(2)延长
交
于点
,利用平行线的性质通过“角角边”证明△CFB≌△AGD,得到
,再根据直角三角形中斜边上的中线等于斜边的一半即可证得
;
(3)延长
,
交于点
,同(2)通过“角角边”证明△CFB≌△AGD,得到
,进而证得
.
解:![]()
;
∵四边形ABCD为平行四边形,
∴AD=BC,AO=CO,∠DAG=∠BCF,
∵
,
,
∴∠BFC=∠DGA=90°,
∴△CFB≌△AGD(AAS),
∴CF=AG,
∴
;
![]()
证明如图
,延长
交
于点
,
![]()
,
,
,
,
,
,
,
,
,
;
如图
,延长
,
交于点
,
![]()
四边形
是平行四边形,
,
,
,
,
,
,
,
,
,
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点A、B的坐标分别为(6,6)、(6,0).抛物线
的顶点P在折线OAAB上运动. (1)当点P在线段OA上运动时,抛物线
与y轴交点坐标为(0,c).①用含m的代数式表示n;
②求c的取值范围;
(2)当抛物线
经过点B时,求抛物线所对应的函数表达式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校组织七年级学生参加了一次“运算能力”比赛,共有400名学生参加,参赛学生的成
均为正数,且最低分为60分,为了解本次比赛学生的成绩分布情况,抽取了其中部分学生的成绩作为样本进行统计,并制作出了如下两个统计图:

请根据所给信息,解答下列问题:
(1)所抽取分析的学生数量为 人;
(2)成绩为
这一组的人数占体体人数的百分比为 ;(3)成绩为
这一组的所在的扇形的圆心角度数为 ;(4)请补全频数分布直方图;
(5)若成绩达到90分或以上为“优秀”等级,则参加这次比赛的学生中属于“优秀”等级的约有 人 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用
(元)与种植面积
之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.
(1)直接写出当
和
时,
与
的函数关系式;(2)广场上甲、乙两种花卉的种植面积共
,若甲种花卉的种植面积不少于
,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】将一张长方形的纸对折,如图所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,
(1)折一折,数一数,连续对折四次后,可以得到多少条折痕?
(2)想一想,如果对折n次,可以得到多少条折痕?
(3)如果能对折10次,可以得到多少条折痕?
(4)如果对折n次,可以得到多少个一样大小的小长方形?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,∠ABC=45°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为点F.
(1)当点F落在AB上时,求∠BCF的度数;
(2)若∠EBF=15°,求CF的长;
(3)当点E从点A运动到点B时,求点F运动的路径长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】函数y=ax﹣a与y=
(a≠0)在同一直角坐标系中的图象可能是( )A.
B.
C.
D.
相关试题