【题目】随着科技进步,无人机的应用越来越广,如图1,在某一时刻,无人机上的探测器显示,从无人机A处看一栋楼顶部B点的仰角和看与顶部B在同一铅垂线上高楼的底部C的俯角.

(1)如果上述仰角与俯角分别为30°60°,且该楼的高度为30米,求该时刻无人机的竖直高度CD;

(2)如图2,如果上述仰角与俯角分别为αβ,且该楼的高度为m米.求用α、β、m表示该时刻无人机的竖直高度CD.


参考答案:

【答案】(1) (2)

【解析】

(1)过AAD⊥CB,垂足为点D.Rt△ABD,∠BAD=30°.得AB=2BD;Rt△ABC,∠CBA=60°,得ACB=30°BC=2AB , CD=BC-BD

(2)设CD=x, BD=m-x ,tanα==;tanβ==,所以,

tanβ·(m-x)=tanα·x,可求x.

(1)解 :过AAD⊥CB,垂足为点D.

Rt△ABD,∠BAD=30°,

∴AB=2BD

Rt△ABC,∠CBA=60°,

∴∠ACB=30°

∴BC=2AB ,∵BC=30 ,

∴AB=15

∴BD=7.5

∴CD=BC-BD=30-7.5=22.5

答:无人机的竖直高度CD22.5米。

(2)解 :设CD=x, BD=m-x ,

Rt△ABD,∠BAD=α,

∴tanα==;

Rt△ADC,∠DCA=β ,

∴tanβ==,

,

tanβ·(m-x)=tanα·x

∴x=

关闭