【题目】如图.△ABC中,∠C=2∠B,D是BC上一点,且AD⊥AB,点E是BD的中点,连结AE.
(1)求证:BD=2AC;
(2)若AE=6.5,AD=5,那么△ABE的周长是多少?
![]()
参考答案:
【答案】(1)见解析;(2)25
【解析】
(1)在Rt△ADB中,点E是BD的中点;根据直角三角形的性质,可得BE=AE,故∠AEC=2∠B=∠C;AE=AC,代换可得结论;
(2)根据勾股定理可得AB的长,结合(1)的结论,可得答案.
(1)证明:∵AD⊥AB,
∴∠BAD=90°,又点E是BD的中点,
∴
∴∠EAB=∠EBA,
∴∠AEC=2∠B,又∠C=2∠B,
∴∠AEC=∠C,
∴AE=AC,
∴BD=2AC;
(2)解:∵∠BAD=90°,点E是BD的中点,
∴BD=2AE=13,EA=EB=6.5,
由勾股定理得,
∴△ABE的周长=AB+AE+BE=12+6.5+6.5=25.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:在平行四边形ABCD中,点O是边AD的中点,连接CO并延长交BA延长线于点E,连接ED、AC.
(1)如图1,求证:四边形AEDC是平行四边形;
(2)如图2,若四边形AEDC是矩形,请探究∠COD与∠B的数量关系,写出你的探究结论,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:OA⊥OC,∠AOB:∠AOC=2:3,画出图形,并求∠BOC的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD中,点O是对角线AC的中点,点M为BC上一点,连接AM,且AB=AM,点E为BM中点,AF⊥AB,连接EF,延长FO交AB于点N.
(1)若BM=4,MC=3,AC=
,求AM的长度;(2)若∠ACB=45°,求证:AN+AF=
EF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,过点A作BE的垂线交BE于点F,交BC于点G,连接EG,求证:四边形ABGE是菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=2,AO=BO,P是直线CO上的一个动点,∠AOC=60°,当△PAB是以BP为直角边的直角三角形时,AP的长为( )

A.
,1,2 B.
,
,2 C.
,
,1 D.
,2 -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面的文字,解答问题:大家知道
是无理数,而无理数是无限不循环小数,因此
的小数部分我们不可能全部地写出来,于是小明用
﹣1来表示
的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为
的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<(
)2<32 , 即2<
<3,∴
的整数部分为2,小数部分为(
﹣2). 请解答:
(1)
的整数部分是 , 小数部分是
(2)如果
的小数部分为a,
的整数部分为b,求a+b﹣
的值.
相关试题