【题目】如图,平行四边形ABCD中,点O是对角线AC的中点,点M为BC上一点,连接AM,且AB=AM,点E为BM中点,AF⊥AB,连接EF,延长FO交AB于点N.
(1)若BM=4,MC=3,AC=
,求AM的长度;
(2)若∠ACB=45°,求证:AN+AF=
EF.
![]()
参考答案:
【答案】(1)
;(2)见解析
【解析】
(1)连接AE.根据等腰三角形的性质得到,AE⊥BM,根据勾股定理求出
即可得解.
(2)连接AE,作EH⊥AF于F,EG⊥DC交DC的延长线于E.根据∠AEC=∠AFC=90°,∠AEC+∠AFC=90°,得到A,E,C,F四点共圆,根据圆周角定理得到∠AFE=∠ACE=45°,继而得到∠EFA=∠EFG=45°,根据等腰直角三角形的性质得到EH=EG,AE=EC,证明Rt△EHA≌Rt△EGC,Rt△EHF≌Rt△EGF,△AON≌△COF根据全等三角形的性质得到,AN=CF,AN+AF=FC+AF=FG﹣CG+FH+AH=2FH,根据
即可证明.
(1)解:如图1中,连接AE.
![]()
∵AB=AM,BE=EM,
∴AE⊥BM,
在Rt△ACE中,∵AC=
,EC=EM+CM=5,
∴
在Rt△AEM中,
(2)如图,连接AE,作EH⊥AF于F,EG⊥DC交DC的延长线于E.
![]()
∵∠AEC=∠AFC=90°,
∴∠AEC+∠AFC=90°,
∴A,E,C,F四点共圆,
∴∠AFE=∠ACE=45°,
∴∠EFA=∠EFG=45°,
∵EH⊥FA,EG⊥FG,
∴EH=EG,
∵∠ACE=∠EAC=45°,
∴AE=EC,
∴Rt△EHA≌Rt△EGC(HL),
∴AH=CG,
∵EF=EF,EH=EG,
∴Rt△EHF≌Rt△EGF(HL),
∴FH=FG,
∵AB∥CD,
∴∠OAN=∠OCF,
∵∠AON=∠COF,OA=OC,
∴△AON≌△COF(ASA),
∴AN=CF,
∴AN+AF=FC+AF=FG﹣CG+FH+AH=2FH,
∵
∴![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为常分数,如:
=
=2+
=2
.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如
,
这样的分式就是假分式;再如:
,
这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:
=1-
; 解决下列问题:
(1)分式
是 分式(填“真分式”或“假分式”);(2)
将假分式化为带分式;(3)如果 x 为整数,分式
的值为整数,求所有符合条件的 x 的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:在平行四边形ABCD中,点O是边AD的中点,连接CO并延长交BA延长线于点E,连接ED、AC.
(1)如图1,求证:四边形AEDC是平行四边形;
(2)如图2,若四边形AEDC是矩形,请探究∠COD与∠B的数量关系,写出你的探究结论,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:OA⊥OC,∠AOB:∠AOC=2:3,画出图形,并求∠BOC的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图.△ABC中,∠C=2∠B,D是BC上一点,且AD⊥AB,点E是BD的中点,连结AE.
(1)求证:BD=2AC;
(2)若AE=6.5,AD=5,那么△ABE的周长是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,过点A作BE的垂线交BE于点F,交BC于点G,连接EG,求证:四边形ABGE是菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=2,AO=BO,P是直线CO上的一个动点,∠AOC=60°,当△PAB是以BP为直角边的直角三角形时,AP的长为( )

A.
,1,2 B.
,
,2 C.
,
,1 D.
,2
相关试题