【题目】某种产品形状是长方体,长为8cm,它的展开图如图:
![]()
(1)求该长方体的宽和高;
(2)请为厂家设计一种包装纸箱,使每箱能装2件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少(纸箱的表面积尽可能小),并求出该纸箱的体积。
参考答案:
【答案】(1)长方体的宽为6cm,高为3 cm;(2)纸箱的体积为:8×6×6=288 cm
【解析】
(1)根据已知图形得出长方体的高进而得出答案;
(2)设计的包装纸箱为8×6×6规格.
(1)由图形可得,宽和高的总长为:25-8×2=9 cm
∴高为:12-9=3 cm
宽为:9-3=6 cm
答:长方体的宽为6cm,高为3 cm.
(2)为使纸箱的表面积尽可能小,则应把较大的面重叠在一起,即6×8的面重合,所以纸箱的长、宽、高分别为8cm、6cm、6cm
∴纸箱的体积为:8×6×6=288 cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=x -2mx(m为常数),当-1≤x≤2时,函数y的最小值为-2,则m的值是( )
A.
B.
C.
或
D. -
或
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0).

(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.
①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;
②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.
当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于平面直角坐标系xOy中的图形W和点P,给出如下定义:F为图形W上任意一点,将P,F两点间距离的最小值记为m,最大值记为M,称M与m的差为点P到图形W的“差距离”,记作d(P,W),即d(P,W)=M-m,已知点A(2,1),B(-2,1)
(1)求d(O,AB);
(2)点C为直线y=1上的一个动点,当d(C,AB)=1时,点C的横坐标是 ;
(3)点D为函数y=x+b(-2≤x≤2)图象上的任意一点,当d(D,AB)≤2时,直接写出b的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,
),反比例函数
的图像与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是( )
A.
B. -
C.
D. -
-
科目: 来源: 题型:
查看答案和解析>>【题目】某服装店购进一批甲、乙两种款型衬衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.
(1)求甲、乙两种款型的衬衫各购进多少件?
(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型剩余的按标价的五折降价销售,很快全部售完。求售完这批衬衫商店共获利多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】一船在灯塔
的正东方向
海里的
处,以20海里/时的速度沿北偏西
方向航行。(1)多长时间后,船距灯塔最近?
(2)多长时间后,船到灯塔的正北方向?此时船距灯塔有多远?

相关试题